


Soft Matter in Plants
From Biophysics to Biomimetics



Soft Matter Series

Series editors:
Hans-Jürgen Butt, Max Planck Institute for Polymer Research, Germany
Ian W. Hamley, University of Reading, UK
Howard A. Stone, Princeton University, USA
Karen J. Edler, University of Bath, UK
Amy Shen, Okinawa Institute of Science and Technology Graduate University,
Japan

Titles in this series:
1: Functional Molecular Gels
2: Hydrogels in Cell-based Therapies
3: Particle-stabilized Emulsions and Colloids: Formation and Applications
4: Fluid–Structure Interactions in Low-Reynolds-Number Flows
5: Non-wettable Surfaces: Theory, Preparation and Applications
6: Wormlike Micelles: Advances in Systems, Characterisation and

Applications
7: Electrospinning: From Basic Research to Commercialization
8: Polymer-modified Liquid Crystals
9: Polymer Colloids: Formation, Characterization and Applications

10: Bijels: Bicontinuous Particle-stabilized Emulsions
11: Peptide-based Biomaterials
12: Droplet Microfluidics
13: Soft Matter for Biomedical Applications
14: Drying of Complex Fluid Drops: Fundamentals and Applications
15: Soft Matter in Plants: From Biophysics to Biomimetics

How to obtain future titles on publication:
A standing order plan is available for this series. A standing order will bring
delivery of each new volume immediately on publication.

For further information please contact:
Book Sales Department, Royal Society of Chemistry, Thomas Graham House,
Science Park, Milton Road, Cambridge, CB4 0WF, UK
Telephone: þ44 (0)1223 420066, Fax: þ44 (0)1223 420247
Email: booksales@rsc.org
Visit our website at www.rsc.org/books



Soft Matter in Plants
From Biophysics to Biomimetics

Edited by

Kaare H. Jensen
Technical University of Denmark, Denmark
Email: khjensen@fysik.dtu.dk

and
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Preface

Vascular plants have inhabited Earth’s surface for about 400 million years.
They lead the evolutionary race by all accounts,1 and their importance to the
terrestrial ecosystem, geology, and human civilization requires no emphasis.
Yet, plants remain mysterious when observed from the vantage point of a
physicist or an engineer. How do organisms made from just a few soft
polymers, minerals, and water perform such striking physical and chemical
feats? The remarkable relationship between structure, deformation, flow,
and function in plants is the topic of this book.

A myriad of reasons has been put forward to justify the scientific study
of mechanics and fluid flow in plants. In most instances, they fall within
the four categories proposed by T. J. Pedley:2 (1) physiology and ecology:
understanding how plants work and interact with other living organisms
and the environment; (2) stress: understanding how strong fluctuations
impact plants; (3) pathology: discerning the origins and development of
diseases; (4) bioengineering: exploring synthetic changes to the plant gen-
ome. It is evident that scientists working in these diverse research fields will
be motivated by different research questions and applications of their work.
However, the essential fluid and solid mechanical principles are clearly the
same for all. Exploring the physics of both equilibrium and extreme cases as
they relate to the mechanical integrity and transport capacity of plants is
therefore worthwhile.

From a societal perspective, it is appears that plants will become more
(or at least not less) significant to humans in the coming decades and
centuries. To this end, substantial resources are being invested into re-
search programmes with the goal of improving plant productivity, water
and fertiliser efficiency, disease resistance, and so on. The critical ques-
tion, however, is how best to achieve this goal. On the one hand, our
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r The Royal Society of Chemistry 2023
Published by the Royal Society of Chemistry, www.rsc.org

v



understanding of molecular processes in plants is steadily advancing, and
many transformation tools have become more widely available. Also,
certain key activities, such as photosynthesis or starch biosynthesis, are
being elucidated with ever greater accuracy. On the other hand, the
strong focus in research and funding on molecular biology has yet to
achieve a Moon-shot jump in productivity. The reason for this is, of
course, as of yet unknown. One cannot help wonder, however, if pursuing
a complementary approach to understand the mechanics of plants at
mesoscopic and microscopic scales is worthwhile. Such an approach
would bridge the intellectual gap between the action of genes and pro-
teins and the biophysical or biochemical processes with which they are
ultimately associated. It would also help us better understand plants’
uniquely distributed organismal architecture. However, this portfolio of
research questions are, we believe, too often overlooked.

This book is written in an effort to place soft matter physics, which
naturally focuses on mesoscopic and microscopic scales, in the context of
modern plant science. As such, our objective is twofold: first, we aim to
introduce physicists to a myriad of fascinating and important phenomena in
plants. Second, we seek to highlight the benefits of using reasonably simple
models to describe tangled biological systems. Physics applied to biology has
often involved bringing new instrumentation to tackle biological questions.
However, we do not believe this should be the sole focus. Physics represents
a way of thinking that can shed new light on biological questions:3 the desire
to find the simplest possible description, with a few essential ingredients, of
complex phenomena is a unique perspective that has important advantages
(and yes, limitations as well). Equally important is the fact that biology can
inspire physicists to address new questions in physics, e.g., related to
transport networks or efficient design strategies.

Having established the need for a concise introduction to soft matter in
plants, we were first to recognize our own inability to provide such an
overview. We are therefore extremely grateful to our editor Michelle Carey
who permitted us to commission chapters from some of the leading
researchers working in the field. Apart from two introductory chapters
written by us, their work comprises the main body of this book, and should
be recognised as such.

The book begins with a general introductory chapter giving the basic
physical concepts needed for describing important processes in plant
biophysics and biomechanics, such as water transport, growth or plant
movements (Chapter 1). It is then followed by six independent chapters
covering a wide range of applications and scales, from cell and tissue
physics to engineering applications. Chapter 2 focuses on fluid–structure
interaction phenomena in plants, in connection with signaling, vascular
transport or intracellular flows. Chapter 3 is devoted to the mechanics of
growth and morphogenesis, a central topic in modern biology. Starting
from the seminal work of Lockhart on single plant cell growth, it provides
the basic theoretical tools and concepts for modeling growing plant
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tissues. Chapter 4 provides an overview of the rich physics of water stress
and cavitation, as found in the vascular system of plants during sap ascent,
with particular emphasis on cavitation in plant-relevant confined and
deformable environments. The book then moves underground to explore
the fascinating world of plant roots (Chapter 5). This chapter details how
soil affects the physics of root growth and the feedback of roots on the
mechanical properties of the soil. Root penetration in the soil can be seen
as a particular case of invasive growth – a topic of broad importance in
biology and related to reproduction, nutrition and disease transmission.
Chapter 6 discusses the experimental strategies developed to investigate
the biomechanics of invasive growth at the cellular level in plants and
fungi. The book closes with a discussion on biomimetic applications
of plant movements, focusing on passive movements induced by humidity
change in botanical and artificial systems (Chapter 7).

Kaare H. Jensen and Yoel Forterre
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CHAPTER 1

Basic Soft Matter for Plants

YOËL FORTERRE

Aix-Marseille University, CNRS, IUSTI, Marseille 13013, France
Email: yoel.forterre@univ-amu.fr

This chapter provides an overview of fluid and solid mechanical concepts
applied to plants. The objective is to present the main physical mechanisms
and laws needed to describe some important physiological processes in
plants, such as water and solute transport, growth, rapid movements and the
feedback between mechanical signals and biology. Emphasis is given on
presenting the various laws in their simplest mathematical form (avoiding
tensorial formulation as much as possible), discussing the scaling laws and
orders of magnitude relevant to plants. Many of the physical and biological
concepts introduced in the chapter will be studied in more detail in
subsequent chapters.

1.1 Fluids
Plants manipulate and move water to perform almost all their physiological
functions. Yet, there is no microscopic ‘‘water pump’’ in plants that would
‘‘actively’’ transport water molecules across cells, as there is for proteins or
ions. Therefore, whether minute transmembrane flows or large bulk trans-
port through trees, all water movement in plants occurs passively, according
to the well-known principles of thermodynamics and fluid mechanics.
In this section, we review those mechanisms and present the main physical
laws of water transport in plants. Readers interested in a more com-
prehensive presentation of both the biological and physical contexts
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may wish to consult recent reviews on the topic, such as Stroock et al.153

or Jensen et al.75

1.1.1 Water Potential and Turgor Pressure

1.1.1.1 Some Definitions

In plant science, it is common to characterize the thermodynamic status of
water using water potential C, defined as the chemical potential of water
relative to a reference state, per unit volume:35,85,110,112

C¼ mw � m0
w

vw
: (1:1)

Here mw is the chemical potential of water, i.e. the Gibbs free energy per
unit mole, m0

w is the chemical potential of water in the reference state,
chosen to be pure liquid at atmospheric pressure and at ambient
temperature, and nwE18 cm3 mol�1 is the molar volume of liquid water.
Using this definition, the water potential has the dimension of a pressure
(unit Pa or J m�3) and is null for pure water at 1 atmosphere. The water
potential depends on the thermodynamic state of water, i.e. its solid, liquid
or gaseous state, the presence of other molecular constituents interacting
with the water and the possible presence of an external field such as gravity
acting on the water. We provide below the main expressions of water
potential useful for plants.

� For a diluted aqueous solution under gravity, as found in the vessels of
the vascular system or in the large vacuoles of cells (Box 1.1), the water
potential may be decomposed as:

Cliq¼CpþCosþCg¼ P� cRTþ rgz. (1.2)

The first term Cp¼ P is the enthalpic or pressure contribution to the water
potentialy, where P is defined as the total pressure of the solution minus the
atmospheric pressure. When referring to the pressure inside plant cells, this
pressure difference is usually called the turgor pressure. The second term
Cos¼�cRT is the osmotic contribution corresponding to the free enthalpy
of mixing of the solute in water, as given by the van’t Hoff’s law. Here c is the
solute concentration (unit mol m�3), RC8.31 JK�1 mol�1 is the ideal gas
constant and T is the absolute temperature (unit Kelvin), such that
RTC2500 J mol�1 at ambient temperature. The opposite of the osmotic term
P¼�Cos¼ cRT, thereafter called the osmotic pressure, is often used
instead of Cos. Finally the last term Cg¼ rgz is the contribution of the
external gravity field, where rC103 kg m�3 is the water density, gC9.8 m s�2

is the intensity of gravity and z is the altitude above ground.

yThe compressibility of water is ignored in this expression; see Chapter 4.
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Box 1.1 Biological background.
Figure 1.1a shows a typical plant cell as described in a biology text-
book.155 It consists of a water pocket – the vacuole – which can represent
up to 95% of its volume, and the cytoplasm, which contains the cyto-
skeleton and the organelles necessary for the functioning of the cell, such
as the nucleus, the chloroplasts and the mitochondria. Plant cells have
various sizes depending on the organism, the type of cell and the stage of
development, ranging from a few microns for the stem cells of buds to
several centimeters for the giant cells of some aquatic algaeyyy. Like any
cell, the plant cell is surrounded by a semi-permeable plasma membrane,
whose pore size allows water molecules to pass freely but prevents the
passage of large solute molecules.

The main structural difference between animal cells and plant cells is
the existence, in the latter, of a stiff wall surrounding the plasma mem-
branezzz. This wall, whose thickness is of the order of 0.1 to 1 mm, allows
the plant cell to sustain a very high internal hydrostatic pressure of the
order of several bars, called turgor pressure (Section 1.1.1.2). The cell wall
of plants is made of cellulose microfibrils embedded in a matrix of
polysaccharides and proteins (Figure 1.1b). The cellulose microfibrils –
the stiffer element of the wall – are produced from a protein complex that
crosses the cell membrane and runs like a cargo along the cortical
microtubules located inside the cell (Figure 1.1b). As a result, the orien-
tation of the microfibrils deposited in the wall corresponds to the
orientation of the cortical microtubules. This may impart mechanical
anisotropy to the cell wall if the microtubule arrangement is anisotropic
(Section 1.2.2.1).

Water in plants is generally taken up at the root level in the soil and
transported throughout the plant body to the organs and leaves, where
most of the absorbed water evaporates (Section 1.1.4). In compact, non-
vascular tissue, such as in roots for radial transport or in the shoot growth
zone, water follows two main pathways (Figure 1.1c). The first pathway,
called the apoplast pathway, corresponds to transport in the cell wall
only, the apoplast being defined as the plant volume contained outside
the plasma membrane of cells. This pathway avoids the high hydraulic
resistance of the plasma membrane but has a very small volume: the
volume of the apoplast in non-vascular tissues is only 1–10% of the total
tissue volume. In addition, the apoplast pathway does not allow for os-
motic control of flow, because the cell wall is not very selective for solutes.
The second pathway is the cell-to-cell pathway and includes the symplast
and the transmembrane pathways. The symplast is defined as the volume
contained within the plasma membrane of cells, and is thus the dual of

yyyGreen algae and land plants belong to the Plantae kingdom, or ‘‘green plants’’, characterized
by the existence of chloroplasts containing green chlorophyll.

zzzOther examples of walled organisms are fungi, bacteria and archaea.
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the apoplast. It forms a continuous medium because the cytoplasms of
the cells are connected to each other by plasmodesmata, small nanoscale
pores whose permeability to water and solutes can be regulated68 (see
Chapter 2). The cell-to-cell pathway is under direct osmotic control by
the cells.

As well as these pathways, most land plants have evolved specialized
vascular tissues to carry water and other fluids over long distances. The
xylem, on the one hand, is the pipe network that transports the sap, made
of almost pure water, from the roots to the organs and leaves. It consists
of long interconnected conduits made of dead cells typically 10 to 500 mm
in width. Here transport is driven by a pressure gradient induced by
evaporation and capillary cohesion in the leaves, which pulls water under
negative pressures (Section 1.1.1.2 and Chapter 4). The phloem vascular
network, on the other hand, is adjacent to the xylem and distributes the
photosynthesis product created in the leaves (mainly sugar) to the rest of

Figure 1.1 Basics of plant anatomy. (a) The plant cell. (b) The primary cell wall
and the synthesis of the cellulose microfibrils, showing the cellulose
microfibrils (green), hemicellulose (pink), pectin (beige), the plasma
membrane (brown), the cellulose synthase complex (blue) and the
cortical microtubule (orange). (c) Water pathways in non-vascular
tissues. Drawings in (a) and (c) are inspired from the book.155
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� The water potential of a humid vapor, as found inside leaves where gas
exchange with the atmosphere takes place, is given by:

Cvap¼
RT
vw

ln½RH� ¼ RT
vw

ln
Pvap

PsatðTÞ

� �
; (1:3)

where [RH] ¼ Pvap/Psat(T) is the relative humidity of the atmosphere, Pvap

is the partial pressure of water in the vapor, Psat(T) is the saturation
pressure of water in airz under atmospheric pressure and ambient tem-
perature T (Psat¼ 2.3�103 Pa at 20 1C) and RT/vwE135 MPa at 300 Ky.

� Finally, water is also found inside the cell wall of plants, where it binds
with the cellulose network and other macromolecules such as hemi-
celluloses, pectins, and xyloglucans. The cell wall can be highly hy-
drated, as in the primary wall of growing cells, where about 75–80% of
the wall volume is water,155 or less hydrated, as in the lignified sec-
ondary wall of wood. The water potential of a gel-like medium akin to
the cell wall is called the matrix (or matric) potential and denoted Cm.
The matrix potential of the cell wall depends on its water content, pH,
temperature and the chemical affinity between the water molecules and
the polymer constituents of the wall, mainly.112 We provide in Box 1.4
an expression of the matrix potential for an ideal elastomeric hydrogel,
derived from the theory of polymer solutions.

1.1.1.2 Consequences of Water Balance

At equilibrium, the chemical potential of water, and thus the water potential,
must be uniform in all regions that can freely exchange water molecules.
This basic thermodynamic statement has key consequences for the mech-
anical status of water in plants, which we briefly discuss below.

the tissue for growth and storage. It consists of long living cells about
10 mm wide and 1 mm long separated by perforated sieve plates, forming
a continuous symplastic pathway. Transport through the phloem is dri-
ven by an osmotic mechanism as explained in Section 1.1.3.2.

zThe fact that the saturation pressure Psat(T) of water vapor in air appears in eqn (1.3), instead of
the saturation pressure of a pure water vapor, comes from the choice of the reference state for
the definition of the water potential (pure liquid under atmospheric pressure). In practice,
these two definitions of the saturation pressure differ by less than 0.1%, so they are usually not
distinguished (see the discussion in Chapter 4).
yThe water potential of the vapor should include an additional gravity term Cg¼rgz, having the
same expression as for a liquid phase. However, this contribution is usually negligible com-
pared to the humidity term (eqn (1.3)).
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First consider a plant cell containing solutes of concentration c immersed
in an external bath of pure water at ambient atmosphere (Cbath¼ 0)
(Figure 1.2a). We assume that the cell is surrounded by an ideal semi-
permeable membrane that allows water to pass freely through it but keeps
solutes inside. Using eqn (1.2), equality of the water potential between the
cell and the bath (Ccell¼Cbath) implies that there exists a positive pressure
difference, or turgor pressure, between the inside of the cell and the outside,
given by P¼P¼ cRT. At equilibrium, the turgor pressure is thus equal to the
osmotic pressure. For a solute concentration c¼ 0.2 mol L�1¼ 200 mol m�3,
the turgor pressure is P¼ 0.5 MPa. This is twice the pressure of a car tyre and
larger than the typical tension TmuscleB0.2 MPa produced by actin-myosin
molecular motors and muscle-like fibers.134 Such a large value of turgor

Figure 1.2 (a–c) Water potential balance and turgor pressure in plants. (a) Positive
turgor pressure driven by osmosis for an isolated plant cell immersed in
pure water (red arrows: tension in the cell wall). (b) Negative turgor
pressure driven by evaporation for an isolated cell in equilibrium with a
humid atmosphere (red arrows: compression in the cell wall). (c) The
water column in the xylem of a tree is under tension (negative pressure).
Mechanically, the column is held owing to a tiny capillary meniscus
located at the cell wall/air interface (close-up sketch). (d) Pressure-driven
flows: Poiseuille flow in a pipe (left) and Darcy flow in a porous medium
of permeability k (right).
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pressure is found routinely in hydrated plant cells, and can even reach up to
4 MPa – 40 bars! – in the stomata55 or in the shoot apical meristem of
Arabidopsis.93 These high positive values of the turgor pressure can be
achieved in plants because the cell is surrounded by a stiff cell wall
(see Box 1.1). As we shall see in this chapter and throughout the book, turgor
pressure plays a key role in plant biomechanics and physiology. It
determines the rigidity of non-woody plant tissues and drives irreversible
cell-wall deformation during growth. Change of turgor pressure driven by
osmotic or evaporation gradients is also responsible for many reversible
movements in plants.39,71

The second application we consider is an evaporating cell in contact
with a humid atmosphere at 1 bar (Figure 1.2b). If thermodynamic
equilibrium is reached, equality of the water potential between the cell and
the vapor (Ccell¼Catm) implies from eqn (1.2) and (1.3) a turgor pressure
inside the cell given by P¼ cRTþ (RT/vw)ln[RH]. For a 90% humidity, i.e.
[RH]¼ 0.9, and a solution concentration c¼ 0.2 mol L�1 as before, the
turgor pressure is P¼�14.5 MPa or �145 bars! In this situation, the turgor
pressure is therefore highly negative, which means that the liquid water
inside the cell is in tension and pulls on the cell wall. Large negative water
pressures due to evaporation are indeed observed in plant cells with very
rigid cell walls, such as in the woody cells of the xylem in trees. However,
liquid water in tension is in a metastable state. If a gas germ of sufficient
size nucleates or is already present inside the cell, cavitation may occur:
the microscopic gas germ suddenly expands into a macroscopic bubble.
The mechanism of bubble cavitation and its consequence for embolism
formation in trees is discussed in Chapter 4. Negative water pressure, and
more generally water tension in the cell wall of dead tissues, is also re-
sponsible for many passive movements in response to humidity
change,19,76 such as the opening and closing of pine cones,36 the bending
of wheat awns45 or the curling of seed pods.4,51 These hygroscopic move-
ments are discussed in Chapter 7.

In the aforementioned examples, the change of water pressure is induced
by osmotic or humidity gradients. We conclude by considering the more
common situation of a pure water column in static equilibrium under
gravity, as found in the vessels of a tall tree in the absence of flow
(Figure 1.2c). At equilibrium, the water potential of the sap Pþ rgz given by
eqn (1.2) must be uniform along the column. Assuming that the water
potential is zero, which corresponds to a well-watered soil, the water
pressure at the top of the tree is negative and given by P¼�rgHC�0.5 MPa
for a 50 meter-tall tree of height H. It is interesting to compute the size of
the capillary meniscus needed to support this negative pressure difference
mechanically. The Young–Laplace law states that the pressure difference
DPcap between water and air at a curved spherical interface is given by:

DPcap¼�
2g
r
; (1:4)

Basic Soft Matter for Plants 7



where gB0.07 N m�1 is the surface tension of the water/air interface and r is
the radius of curvature of the meniscus, counted positive if the meniscus is
curved toward the air. For DPcapB �rgHB�0.5 MPa, the radius of curvature
of the meniscus is about 0.3 mm. This value is at least one order of magni-
tude smaller than the size of the smallest conductive vessels of the xylem
found in leaves. Therefore, air/liquid capillary suction in the xylem cannot be
the mechanism of sap ascent in trees. By contrast, the wall of plant cells is
a hydrogel with nanometer-size pores that are small enough to support a
very large mismatch of capillary pressure across the water/air interface
(Figure 1.2c, close-up). Therefore, the negative water pressure in the vascular
system of plants is mechanically balanced at the cell wall level, thanks to the
reduction of the matrix water potential: Cm¼�rgH. This equilibrium of
water under negative pressure holds only if there exists a continuous path of
liquid from the ground to the leaves in contact with the atmosphere, where
water eventually evaporates. The coupling between water in tension inside
the xylem, capillary suction by the cell wall and evaporation at the cell wall/
air interface is the basis of the cohesion-theory of sap ascent.38 The reader
interested in xylem flows can consult Tyree and Zimmermann’s book160 or
recent reviews such as ref. 75 and 153.

In the previous examples we have considered situations of thermodynamic
equilibrium, corresponding to a uniform water potential and no water flux.
Water transport requires the presence of water potential gradients, which
can arise from pressure gradients, solute concentration gradients, or
humidity gradients. We now discuss the laws relating these gradients to
water fluxes.

1.1.2 Pressure-driven Flows

1.1.2.1 Viscous Flows

Flows inside plants occur in tiny pipes. The largest conducting vessels in
trees are barely larger than 0.1 mm in diameter (with a range of diameters
from 10 mm to 500 mm160), while water pores inside the cell wall or the cell
membrane are nanometric in size. Hence, although the pressure difference
driving water transport in plants may be very large (BMPa range), the viscous
dissipation is huge, leading to small flow velocities. For example, the typical
velocity U of the sap inside the xylem of trees during the day is a few meters
per hour (B1 mm s�1) for a vessel diameter dB100 mm.160 The Reynolds
number of this flow, which compares inertial to viscous effects, is:

Re¼ rUd
Z

; (1:5)

where rC103 kg m�3 is the sap density and ZC10�3 Pa s is the sap viscosity,
giving a Reynolds number ReB0.1 smaller than 1. Similarly, change of vel-
ocity usually occurs on timescales T from minutes to a day, which are much

8 Chapter 1



Box 1.2 Methods for measuring the turgor
pressure at cellular resolution.

Turgor pressure plays a central role in plant physiology and bio-
mechanics. The development of accurate methods to measure turgor has
thus always been a goal for plant scientists. Most methods give access,
not directly to the turgor pressure P, but to the water potential C or the
osmotic pressure P. If both quantities are known, then P is simply de-
duced from P¼CþP. The main methods for measuring C and P are
described, for example, in Taiz and Zeiger’s book.155 These include
(i) plasmolysis, by bathing the cells in osmotic solutions of varying con-
centrations and determining the onset for plasmolysis, i.e. the bath
concentration for which cell turgor drops to zero; (ii) the use of pressure
chambers, or pressure bombs, which pressurize tissues until water is
expelled, when the applied pressure is equal to the initial tissue water
potential; (iii) psychrometers or cryoscopic osmometers, which deduce
the osmotic pressure from its effect on the shift in some thermodynamic
properties. Besides being indirect, these methods only give access to the
global water status of the tissue, assuming the equilibrium of the water
potentials. By contrast, the two techniques described below can be used
to determine the turgor pressure at cellular resolution, without assuming
thermodynamic equilibrium.

The first method, known as the pressure probe, consists in introducing
a microcapillary directly inside the cell vacuole to record the pressure
(Figure 1.3a). The first detailed measurements were made in 1967 by
Green and Stanton on giant algal cells, using a capillary filled with air and
closed at one end.62 The size of these cells (diameter of about 2 mm for a
length of several centimeters) was large enough to neglect the loss of cell
sap upon insertion of the capillary and to obtain the turgor pressure
directly from the change of air volume in the capillary, using the ideal gas
law PV¼ nRT. For smaller cells, however, this technique cannot be used,
because the compressibility of the measuring system is too large com-
pared to the compressibility of the cell. To overcome this difficulty, the
cellular pressure probe was developed in the 1970s by Steudle and
Zimmermann150 (a detailed presentation of the method can be found in
ref. 149). The tip of the capillary is reduced to a few microns and the
capillary is filled with a liquid – silicone oil – and connected to a closed
oil-filled chamber containing a pressure transducer and a piston. When
the tip of the capillary is inserted into the cell, cell sap compresses the oil
inside the capillary, forming a sap/oil meniscus near the tip that is visible
under a microscope. At equilibrium, when the meniscus is maintained at
a fixed position with the piston, the pressure measured in the chamber is
equal to the turgor pressure inside the cell (the capillary pressure jump
across the meniscus is usually negligible).

The pressure probe not only provides access to the turgor pressure,
but also enables the measurement of the elastic and hydraulic properties of
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the cell. For this purpose, a rapid increase of the cell volume DV is applied
by means of the piston, after which the pressure relaxation is measured by
keeping the meniscus position fixed (Figure 1.3a). The initial relationship
between DV and DP gives access to the elastic bulk modulus of the cell:
Bcell¼ V(DP/DV), providing that the cell volume V is known (eqn (1.33) in
Section 2.2). The relaxation timescale of the pressure, on the other hand,
gives access to the cellular relaxation time tcell¼ V/[LpS(Bcellþ p)] discussed
in Section 2.3 (eqn (1.39)), enabling measurements of the plasma mem-
brane hydraulic permeability Lp. The cellular pressure probe has been used
to determine water relations in various plant cells and organs, including
negative pressure in the xylem.165 Recently, a somewhat simplified version
has been developed, the pico gauge,82 in which most of the volume of the
capillary is filled with a resin that solidifies under UV light, the oil volume
being reduced to the very tip of the capillary. As in Green’s pioneering ex-
periments, the pressure is deduced from the compression of the oil volume
upon insertion into the cell, obtained from image analysis.

The cell pressure probe is unique in giving a direct measure of the cell
turgor. However, this method is invasive and time-consuming and be-
comes increasingly difficult as the cell size decreases typically below 20 mm.
This has motivated the development of alternative indentation-based
methods in recent years.56,97,164 Lintilhac et al. in 2000 were the first to
use indentation to access the turgor of onion epidermal cells, using beads
in the range 50–500 mm in diameter (ball tonometry method91). The turgor
was simply derived from the indentation contact area A measured optically
and the indentation force F assuming F¼ PA. However, for smaller cells,
probes or indentation depths, the determination of the contact area may be
difficult. The influence of the wall tension and cell wall elasticity, ignored in
their analysis, can also be important.

Recently, the use of atomic force microscopy (AFM) techniques with
smaller probes (submicron in size) has made it possible to determine, from
a single indentation curve, both the elastic properties of the wall and the
cell turgor, providing that the cell topography is known11 (Figure 1.3b). The
Young’s modulus of the wall is first determined from the small
indentation-depth portion of the curve, for indentation d much smaller
than the cell wall thickness h, using the classical contact Hertz’s law:
F / Ewall

ffiffiffiffiffiffiffiffiffiffiffiffi
Rprobe

p
d3=2. Interpreting the larger depth portion of the curve re-

quires a model for the indentation of an inflated shell.161 Assuming the
radius of the probe to be much smaller than the cell size and indentation
not too large (dBh), a linear relationship is predicted between force and
indentation: F¼ kd. The apparent stiffness k is a function of the cell topo-
graphy (obtained with the AFM), the cell wall elasticity (determined previ-
ously) and the turgor pressure, from which P is obtained. When these
assumptions are not fulfilled, disentangling turgor pressure and wall
elasticity from the indentation curve is not obvious and mostly requires the
use of finite element method (FEM) simulations.93,135
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longer than the timescale of momentum diffusion across the diameter of the
pipe given by tBrd2/ZB0.01 s, such that the Stokes number, defined as:

St¼ t
T
¼ rd2

ZT
(1:6)

is much smaller than 1.
Therefore, inertial effects can usually be ignored when dealing with water

transport in plants. In this situation, the Navier–Stokes equation of fluid
mechanics reduces to the Stokes equation, balancing the pressure gradient
and the viscous stress:

�rPþ ZDUþ rg¼ 0 (1.7)

whereas mass conservation imposes that:

r.U¼ 0 (1.8)

where U is the local velocity field of the flow and g the gravity vector.

1.1.2.2 Hagen–Poiseuille’s Law

Integrating eqn (1.7) and (1.8) in the case of an infinitely long, vertical pipe
of circular cross-section of diameter d, like the conducting vessels of the

Figure 1.3 Measurements of the turgor pressure at cellular resolution. (a) Cellular
pressure probe. (b) Nanoindentation (figure redrawn and adapted from
ref. 93). Left: principle of the AFM technique. Center: small indentation
depths d give access to the cell wall elasticity. Right: large indentation
depths are sensitive to both the local cell geometry, cell wall elasticity
and turgor pressure.
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xylem (Figure 1.2d), gives Hagen–Poiseuille’s law, relating the flow rate Q
(unit m3 s�1) and the pressure gradients along the pipe:

Q¼ � pd4

128Z
rðP þ rgzÞ: (1:9)

One recognizes a linear relationship between the flow rate (the ‘‘flux’’) and
the gradient of water potential (the ‘‘force’’)z. The coefficient of pro-
portionality defines the conductivity K of the pipe (conductance per unit
length), which varies as the vessel diameter to the power 4. Hence, when the
vessel diameter decreases in an ideal branch by N identical pipes in parallel,
an increasing number of vessels N p d�4 is needed to achieve the same flow
rate under a given pressure gradient.

1.1.2.3 Darcy’s Law

The previous relationship can be generalized to pressure-driven flows in a
continuum porous material (Darcy’s law):

J¼ k
Z
rðP þ rgzÞ; (1:10)

where J is the flow rate per unit area (unit m s�1) and k (unit m2) is the hy-
draulic permeability of the porous material (Figure 1.2d). The hydraulic
permeability scales with the pore size d as k p d2 and may be anisotropic,
like in the xylem where flow in the longitudinal direction along the vessels is
much easier than in the transverse direction. Assuming an ideal tree branch
made of N identical pipes of diameter d in parallel, it is possible to explicitly
find the relationship between k and d. The flow rate per unit area is J¼NQ/S,
where Q is the flow rate across a single pipe and S is the area of the cross-
section of the branch. Using Hagen–Poiseuille’s law (eqn (1.9)) and identifying
with Darcy’s law gives an effective longitudinal permeability for the branch
kxylem¼ (d2/32)fxylem, where fxylem¼Np (d2/4)/S is the surface fraction of
xylem. Typical order of magnitudes for dB10–100 mm and fxylemB0.2 give
permeability values in the range kxylemB10�13–10�11 m2, similar to the
permeability of fine granular soils (silt). By contrast, the hydraulic permeability
of the cell wall is much lower, kwallC10�17 m2, which corresponds to water
pores in the cellulosic matrix of nanometric size dB3–4 nm.20,49 For such an
hydrogel made of microscopic pores, Darcy’s law can be generalized as
J¼� (k/Z)rCwall, with Cwall¼Cmþ rgz (see Box 1.4).

zNote that the gradient of solute does not appear in this expression. Indeed, the diffusion of
solute alone, without pressure gradient, is not associated with a global volume flux in the
absence of semi-permeable membranes. This is because the volume flux of solute in this case is
exactly compensated by an equal and opposite volume flux of water molecules, such that Q¼ 0
(this corresponds to a reflection coefficient sS¼ 0; see Section 1.1.3). This may not be the case if
the solute interacts with an external field in very narrow channels, as in diffusiophoresis and
electro-osmosis.
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1.1.3 Osmotic Flows and Solute Transport

Pressure-driven flows are very efficient in carrying water over long distances
and are the main mode of water transport in the apoplast of plants (xylem,
cell wall). Another important mode of transport in plants is osmosis, which
occurs when solute concentration gradients exist across the semi-permeable
membranes of living cells.

1.1.3.1 Water Transport Across Cell Membranes

The transport of water and solute across a semi-permeable membrane like the
plasma membrane of cells can be described using the framework of irrevers-
ible thermodynamics and the linear response between ‘‘forces’’ and ‘‘flux’’
(Onsager relations).35,47,77,148 In the presence of a pressure difference DP and
concentration difference Dc across the membrane, a volume flux (essentially
water) J (unit m s�1) and a molar flux of solute jS (unit mol m�2 s�1) cross the
membrane (Figure 1.4a), given by8:

J¼ LpDP� LpsSRTDc, (1.11)

jS¼ PSDcþ ð1� sSÞ�cJ þ j*
S: (1:12)

On the right-hand side of the water transport eqn (1.11), the first term rep-
resents the pressure-driven flow, where Lp is the hydraulic conductivity of the
membrane (unit m s�1 Pa�1), the second term is the osmotic flow driven by the
solute concentration difference, and sS is the reflection coefficient of the solute
(0rsSr1)**. Physically, osmosis arises because some of the momentum as-
sociated with solute thermal agitation is taken up by the cell membrane and
not by the water molecules, creating a net suction of water across the mem-
brane to the more solute-concentrated compartment (see Box 1.3 and ref. 84).

On the right-hand side of the solute transport eqn (1.12), the first term
corresponds to the passive diffusion of solute along the concentration gra-
dient (Fick’s law type), where PS (unit m s�1) is the membrane permeability
to solute. In plant membranes, both PS and sS are solute dependent and can
be regulated through the plasmodesmata permeability, in a complex feed-
back with turgor pressure.68 The second term corresponds to the coupling
between water transport and solute transport across the membrane, where c̄
is the mean concentration of solute across the membrane. Finally, the third
term j*

S corresponds to the molar flux of solute actively pumped against the
solute gradient using specialized channels and external chemical energy.
Values ranging from j*S¼ 10�7 to 10�6 mol m�2 s�1 are found for the

8These relationships hold for non-electrolytic solutions. In the case of ions, the electric potential
difference across the membrane must be added in the driving forces.

**Eqn (1.11) can be rewritten with the water potential explicitly shown as:
J¼ LpDCþ (1� sS)RTDc. The second term corresponds to the volume dragged by the solutes
when they cross a non-impermeable membrane (sS o 1). In the extreme case where sS¼ 0
(free diffusion), we recover the fact that only a pressure gradient can induce a net flow.
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potassium ion flux responsible for stomatal movement141 and in the motor
cells of Mimosa pudica.152 The highest solute conductance in plant mem-
branes is probably found in MscS-like (small conductance mechanosensitive
ion channel) stretch-activated channels.65

Figure 1.4 Osmotic and transmembrane flows. (a) Water and solute transport
across a semi-permeable membrane driven by a gradient of water
potential. Solute transport (red arrows) can be split into active transport
(straight arrow) and passive transport if the membrane is leaky (undu-
lating arrow: diffusion along gradients of concentration, curved arrow:
solute carried by water flow). (b) Close-up showing two modes of water
transport for an ideal semi-permeable membrane. Top: diffusive trans-
port driven by a water concentration gradient inside a low-water-
solubility membrane, such as the lipid bilayer of the plasma membrane.
Bottom: pressure-driven flow inside water pores, such as aquaporins.
(c) Stirring layer effects at the vicinity of a semi-permeable membrane.
(d) Osmotically driven transport of sugar and Münch’s mechanism.
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In many situations (salts, sugar, metabolites) the reflection coefficient of
the solute is close to unity and the membrane may be assumed perfectly
impermeable to the solutes (sS¼ 1, PS¼ 0). For such an ideal semipermeable
membrane, the water flux across the membrane is just given by the water
potential difference across the cell and the hydraulic conductivity of the
membrane Lp:

J¼ Lp(DP�RTDc)¼ LpDC. (1.13)

Typical values of the membrane conductivity in plant cells are
10�13oLpo10�11 m s�1 Pa�1 depending on the physiological state of the
cell.147 These values actually reflect two distinct modes of water transport at
the microscopic level (see Box 1.3 and Figure 1.4b). On the one hand, water
can cross the cell membrane by molecular diffusion inside the lipid bilayer,
which acts as a low-solubility medium for water. On the other hand, water
can flow in bulk through selective water channels of high conductivity in the
cell membrane, called aquaporins,96 whose shape is optimized for water
flow.59 The opening and closing of these channels is under tight physio-
logical control.

We conclude this brief survey by noting that the fluxes in eqn (1.11) and
(1.12) are set by the value of the concentration jump determined exactly at
the membrane. However, any osmotic flow – or solute diffusion if the
membrane is leaky – tends to pile up solutes on one side of the membrane
and sweep them away on the other side. The concentration difference across
the membrane is then smaller than the concentration difference imposed in
the bulk, which in turn reduces the osmotic flow. To minimize this effect,
some mixing is necessary to homogenize the concentration field and bring
the bulk concentration cb to a distance dSL as close as possible to the
membrane, called the ‘‘unstirred layer’’ thickness35,120 (Figure 1.4c). In plant
cells, such mixing can be achieved thanks to intracellular flows called
‘‘cytoplasmic streaming’’ that are actively driven by molecular motors (see
Chapter 2). If dSL is known, it is possible to estimate the real solute con-
centration at the membrane cm¼ c(x¼ 0) by balancing, in the unstrirred
layer, the diffusive flux and the advection flux: Ddc/dxBJc with the boundary
condition c(x¼ dSL)¼ cb, where D (unit m2 s�1) is the diffusion coefficient
for the solutes and J¼ LpRTcm is the osmotic flux (assuming an ideal
semi-permeable membrane and no pressure difference across the
membrane). We deduce a transcendental equation for cm:

cm¼ cb exp� JðcmÞdSL

D
; (1:14)

which can be used to estimate the reduction of osmotic flux causes by un-
stirring layer effects. In practice, for a typical osmotic flux JB1 mm s�1

(corresponding to an osmotic pressure PB1 MPa with LpB10�12 m s�1 Pa�1),
an unstirred layer dSLB10 mm (a value similar to the cell width) and a
coefficient of diffusion DB10�10 m2 s�1, we find that cmB0.9 cb, meaning
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that unstrirring layer effects on osmotic flows are likely to be small for
plant cells. This may, however, not be the case for solute transport if the
membrane is leaky.35

1.1.3.2 Osmotically Driven Transport of Sugar and Münch’s
Mechanism

Osmotic flows are the basis for the building of the positive turgor pressure in
plant cells discussed in Section 1.1.1. By adjusting their solute content, plant
cells pump in and out water to maintain cell hydration in dry conditions or
change their volume. One of the most important cell movements driven by
osmosis in plants is the closing and opening of the stomata, the cellular
valves that control the exchange of gas between the plant and the atmos-
phere at the surface of leaves.55

Another important example of osmotically driven flow in plants is the
long-distance transport of sugar (Figure 1.4d). Sugar is produced locally in
leaves from photosynthesis. To ensure its transport, sugar is first loaded
inside living pipe-like cells called the phloem, which are adjacent to the
water-filled xylem. This high concentration of sugar in the phloem decreases
its water potential and creates an osmotic flow coming from the xylem,
where the water potential is larger. This inward flow creates, in turn, a
positive turgor pressure at the top of the phloem and thus a pressure-driven
flow that transports sugar along the phloem toward the places where it is
unloaded and used for growth or storage. This mechanism was first pro-
posed by Münch in 1930.107 The velocity of the flow transporting sugar is
controlled by the Münch number:

Mu¼
64ZLpL2

d3 ; (1:15)

where Lp is the membrane permeability of the phloem tube, L the length of
the phloem and d its diameter. For Muc1, the viscous resistance of the
phloem tube dominates. The mean flow velocity is then given by the
Hagen–Poiseuille’s law (see eqn (1.9)): U¼Q/(pd2/4)Bd2/(32Z)cRT/L, where
c is the sugar concentration. By contrast for Mu{1 the dissipation from
the cell membrane dominates and the velocity U is imposed by the water
flux across the membrane J¼ LpcRT (see eqn (1.13)) and volume conser-
vation Upd2/4BpLdJ, giving UB(4L/d)LpcRT. The Münch number is just
the ratio of these two limiting case velocities. A typical value of the Münch
number for the phloem is MuB10�4{1 (taking L¼ 1 cm, the typical
length of a leaf stem, dB20 mm, ZB2�10�3 Pa s, LpB10�13 m s�1 Pa�1 and
cRTB1 MPa75), which gives a phloem’s velocity UB0.2 mm s�1 consistent
with observation.
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The transport of sugar along the phloem is governed by an advection-
diffusion equation:

@c
@t
þ Urc¼DDc; (1:16)

where D [unit m2 s�1] is the diffusion coefficient of sugar molecules in water
(here no sink or source of sugar are considered along the path). The ratio of
the advective to the diffusive term is quantified by the Péclet number:

Pe¼ UL
D
: (1:17)

Taking for the diffusion coefficient of sucrose in water D¼ 5�10�10 m2 s�1,
L¼ 1 cm (leaf stem) and U¼ 0.2 mm s�1 gives Pe¼ 4�103

c1. Therefore,
advection by the osmotic flow clearly dominates diffusion in the long-
distance sugar transport. In-depth discussion of this fascinating mode of
transport can be found in ref. 75.

1.1.4 Evaporation and Vapor Diffusion

We have seen that the water potential within plant tissues is generally
negative, with values ranging from 0 MPa for roots immersed in a well-
watered soil to few -MPa at the tops of trees or for plants living in arid or
saline environments. However, the water potential of the atmosphere is
much lower, with Cvap¼�70 MPa for a typical 60% humidity (see eqn (1.3)).
Water loss by evaporation is thus a critical issue faced by all terrestrial
plants, which they partly solve by covering most of their surfaces with a waxy
hydrophobic layer called cuticle (Figure 1.5a). However, some gas exchange
with the atmosphere must be maintained in order to capture the carbon
dioxine and other gases necessary for photosynthesis and plant metabolism.
This exchange occurs on the surface of leaves through specialized pores
called stomata. Still, a trade-off is required as many water molecules are lost
through evaporation when the stomata open (typically 100 kg of water are
lost for 1 kg of glucose synthesized in plants, see ref. 112), which is achieved
by fine regulation of stomatal function. A general review on leaf hydraulics,
from water movements through the leaf xylem to transport in the air space
between the leaf cells can be found in ref. 137. The complex interplay be-
tween biological signaling and stomata dynamics is discussed in ref. 88.
Here we focus on the basic physics of vapor diffusion in relation to plant
evaporation.

1.1.4.1 Fick’s Law

Evaporation at the liquid/air interface within leaves and diffusion of water
through the stomata represent the final mode of water transport in plants as
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Box 1.3 Osmosis and water transport across cell
membranes.

We have seen that water transport across an ideal semi-permeable
membrane is characterized by a single parameter, the hydraulic
permeability of the membrane Lp, which relates the bulk flux J to the
difference in water potential DC, regardless of whether it comes from a
hydrostatic DP or osmotic RTDc pressure gradient (eqn (1.13)). Micro-
scopically, however, Lp can describe two very different modes of water
transport, which we briefly discuss here (more details can be found in the
excellent book by Finkelstein47).

The first situation concerns a membrane of low solubility for water,
which typically corresponds to the lipid bilayers of the plasma membrane
(Figure 1.4b). In this ‘‘oil membrane’’ model, the concentration of water
molecules in the membrane is low, and water crosses the membrane from
one side to another mainly through diffusion, following a water con-
centration gradient inside the membrane. Fick’s law for the molar flux of
water inside the membrane reads jwater¼Doil

w (cþw � c�w )/‘, where Doil
w is the

diffusion coefficient of water molecules in the oily membrane, ‘ is the
membrane thickness and (cþw � c�w ) is the difference in water molar
concentration at both end of the membrane. This molar flux is associated
with a volume flux of water:

J¼ vw jwater¼Doil
w vw

cþw � c�w
‘

: (1:18)

It is possible to relate this concentration difference inside the membrane
to the external water potential difference DC, and thus to relate Lp and
Doil

w . Indeed, the continuity of the water potential at the interface of both
membranes implies that (see Figure 1.4b for notation):

Pþ � cþRT ¼� Dm0

vw
þ voil

vw
Pþ þRT

vw
lnðcþw voilÞ; ðleftÞ (1:19)

�Dm0

vw
þ voil

vw
Pþ þRT

vw
lnðc�w voilÞ¼ P� � c�RT : ðrightÞ (1:20)

Here, we have used the expression of the chemical potential of water
inside the oily membrane in the dilute limit, moil

w ¼ m0,oil
w þ voilPþRT ln cwvoil,

where noil is the molar volume of the membrane and Dm0¼ m0
w� m0,oil

w is
the difference between the chemical potential of pure water in the reference
state (atmospheric pressure at ambient temperature) and the chemical
potential of water in the membrane in the reference state and for a
water activity equal to one.47 Importantly, since there is a difference of
hydrostatic pressure across the membrane, an external ‘‘grid’’ (e.g. cell wall)
must exist on the right-hand side of the membrane in order to balance
the pressure difference. As a result, the hydrostatic pressure inside
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the whole membrane is uniform and equal to the left-hand side pressure
P1. Assuming that vwDC/RT{1, one may linearize the exponential and
obtain:

cþw � c�w ¼
vwc0

RT
ðPþ � cþRT � P� þ c�RTÞ¼ vwc0

RT
DC; (1:21)

where c0¼ (1/voil)exp[(Dmþ P1(vw� voil))/RT] is the molar concentration
of water in the membrane for a membrane in equilibrium with pure water
in the reference state. Introducing eqn (1.21) in (1.18) and identifying
with the transport eqn (1.13) gives the following expression for the hy-
draulic permeability in the case of lipid membranes:

Llipid bilayer
p ¼ Doil

w v2
wc0

RT‘
: (1:22)

Taking c0¼ 40 mol m�3, Doil
w ¼ 10�10 m2 s�1 and ‘¼ 3 nm (see ref. 47)

gives LpB10�13 m s�1 Pa�1, a correct order of magnitude for the per-
meability of lipid bilayer membranes.

The other situation corresponds to the existence of water pores inside
the membrane, such as aquaporin channels, which let water move freely
but exclude large solutes or ions. In this case, water transport does not
occur through diffusion but more like a pressure-driven bulk flow in a
pipe, although the molecular size of the pore may complicate the de-
scription.47,59 The gradient of hydrostatic pressure driving the flow inside
the pore can be estimated as before, by assuming the continuity of the
water potential on both sides of the pore. Since solutes are excluded from
the pore, the sharp drop of solute concentration on both sides of the pore
induces a sharp drop of hydrostatic pressure, such that Pþpore¼ P1� c1RT
and P�pore¼ P�� c�RT (Figure 1.4b). The gradient of hydrostatic pressure
in the water pore is thus (Pþpore� P�pore)‘¼DC/‘. We recover that, although
the flow in the pore is driven by a purely hydrostatic pressure gradient, its
value is given by the jump of water potential outside the pore, as expected
from the transport eqn (1.13). Assuming Hagen–Poiseuille’s law to hold
(eqn (1.9)) and a surface density of ns pores per unit surface, the total
water flux per unit membrane area is J¼ ns(pd4/128Z)(DC/‘). Identifying
this expression with the transport eqn (1.13) gives the following ex-
pression for the hydraulic permeability in the case of transports through
water pores:

Lwater pores
p ¼ nspd4

128Z‘
: (1:23)

Taking nS¼ 106 pores m�2, d¼ 0.2 nm, ‘¼ 3 nm and Z¼ 10�3 Pas gives
again LpB10�13 m s�1 Pa�1.
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it moves from the soil to the atmosphere. The diffusive flux of water mol-
ecule in a humid atmosphere jwater (number of moles crossing a unit area per
unit time, or mol m�2 s�1) is given by Fick’s law:

jwater¼�Dwrcw, (1.24)

where Dw¼ 2.4�10�5 m2 s�1 is the diffusion coefficient of the water molecule
in air at 20 1C and cw is the molar concentration of water in air (unit mol m�3).
Fick’s law can be equivalently expressed in term of the vapor pressure
gradient, using the gas state equation, Pvap¼ cwRT, or in term of the water
potential of the vapor using eqn (1.3):

jwater¼�
Dw

RT
rPvap¼�

DwvwPsatðTÞ
ðRTÞ2

exp
vw

RT
C

� �" #
rC: (1:25)

However, when expressed in term of the water potential, the coefficient of
proportionality between the water molecular flux and the gradient of water

potential is not constant but varies exponentially as: exp
vw

RT
C

� �
. Hence,

for a given gradient of water potential, a dry atmosphere (very negative C)
has a much lower ‘‘conductivity’’ than a humid one (CC0).

1.1.4.2 Evaporation from Stomata

As a first example of the application of Fick’s law, we consider evaporation
from a surface of pure water subjected to a side wind of velocity Uwind in
an atmosphere of relative humidity [RH]atm¼ Pvap/Psat(T) (Fig. 1.5b).
A diffusive boundary layer of size dB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DwL=Uwind

p
developed above the

surface, where L is the typical surface size. The molecular flux of water is
thus given by:

jBL
water BDw

csat � catm

d
B

DwPsatðTÞ
RT

ð1� ½RH�atmÞ
ffiffiffiffiffiffiffiffiffiffiffi
Uwind

DwL

r
: (1:26)

Taking a wind velocity Uwind¼ 10 m s�1 and a lateral size L¼ 10 cm (leaf size)
gives a diffusive boundary layer of thickness dB0.5 mm. For a very dry
atmosphere ([RH]atmB0), this gives a molecular flux jwaterC10�2 mol m�3 s�1

and an evaporative mass flux Jm¼Mw jwaterC2�10�4 kg m�3 s�1, where
Mw¼ 18 g mol�1 is the molar mass of water. This value is surprisingly close to
the maximal evaporating rate reported per surface leaf area in plants.75 This is
all the more remarkable that stomatal pores covers only 1–10% of the leaf
surface, the rest being almost impermeable to evaporation.

To understand this feature, we consider an ideal leaf made of a flat im-
permeable sheet perforated with holes (stomata) of pore size a (Figure 1.5c).
The sheet is in contact with pure water at the bottom and placed in an at-
mosphere of water vapor concentration catm above. For an isolated stomata,
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the size of the diffusive boundary layer is fixed by the pore size ayy. Assuming
that stomata do not interact with each other, the total evaporation rate of the
leaf per unit area is thus:

jstomata
water B nsa2Dw

csat � catm

a
B nsaDwðcsat � catmÞ: (1:27)

where ns is the number of stomata per unit leaf area. We find that the
evaporative flux from the leaf is equal to the evaporative flux from a surface
of pure water ( jstomata

water BjBL
water) when nsB1/(ad) or fsBa/d, where fsBnsa2 is

the surface fraction covered by the stomata. Taking dB1 mm and aB10 mm,
we find that this condition is fulfilled with stomata covering only 1% of the
leaf area (fs¼ 0.01). Indeed, due to their small size, stomata impose a dif-
fusion length scale much smaller than the air boundary layer, resulting in
high local evaporative gradients that compensate for their small area.

Eqn (1.27) predicts the paradoxical result that, for a sufficiently high
concentration of stomata, the evaporative flux from the leaf could be greater
than that from of a pure water surface. This is because we have assumed
that the external vapor concentration fixing the stomatal vapor flux is catm. This
assumption is valid only if the distance between stomata, sB 1=

ffiffiffiffiffi
ns
p

B a=
ffiffiffiffiffi
fs

p
,

is much larger than the air boundary layer d. In practice, however, s{d.
In this situation, the total resistance to evaporation from the leaf, defined
as RLeaf Evap¼ (csat� catm)/j, is the sum of the stomatal resistance
RstomataB1/(nsaDw)Ba/(fsDw) and the resistance of the air boundary layer
RBL¼ d/Dw (Figure 1.5d). We find that both resistances are equal when
fsBa/d, recovering the previous condition. A detailed discussion of the role of
stomata interaction on leaf vapor diffusion can be found in ref. 89.

1.1.4.3 Diffusive versus Bulk Transport: Plants as Water Valve

As a second application of Fick’s law, it is instructive to compare, for the same
difference in water potential, the mass of water transported in bulk by a pressure
gradient with that transported in vapor form by diffusion in a humidity gradient
(Figure 1.5e). According to Poiseuille’s law (eqn (1.9)), the mass bulk flow through
a pipe of diameter d and length L is Qbulk

m ¼ r(pd4/128Z)�(DC/L), where r is
the density of the liquid water, Z is the water viscosity and DC¼DP is the
pressure difference across the pipe. On the other hand, transport of water
vapor in the same pipe by diffusion from a vapor at saturation to an external
atmosphere of humidity [RH]atm gives, using Fick’s law, a diffusive mass flux:
Qdiffusion

m ¼Mw(pd2/4)(Dw/RT)Psat(T)[(1� [RH]atm)/DC]�(DC/L). Therefore, for
the same gradient of water potential, the ratio of the bulk to diffusive transport is:

Qbulk
m

Qdiffusion
m

¼ rRTd2DC
32ZMwDwPsatðTÞð1� ½RH�atmÞ

: (1:28)

yyThis is valid as long as a{dv where dnB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nL =Uwind

p
is the viscous boundary layer and

nB10�5 m�2 s�1 is the air kinematic viscosity.
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Taking dB1 mm and a water potential difference for an atmosphere of
50% humidity gives: Qbulk

m /Qdiffusion
m B107! This shows that, even in very

small conduits, bulk transport driven by a pressure gradient in the liquid

Figure 1.5 Evaporation in plants. (a) Cross-section of a leaf showing the water transport
path from the xylem (liquid state) to the stomata (gas state). (b) Diffusive air
boundary layer above an evaporative bath of water subjected to a cross-wind.
(c) Evaporation from an isolated stomata modeled as a hole of size a in an
impermeable plate. (d) Pattern of vapor diffusion above a ‘‘leaf’’ made of
several ‘‘stomata’’. Thin solid lines give show the iso-concentration of vapor
while thick solid lines show the direction of the vapor flux. (e) Bulk flow in
the liquid state versus diffusive transport in the gas state for a given water
potential difference DP¼DCvap. (f) Asymmetric water transport (‘‘water
valve’’) at the trichomes of the plant Tillandsia aeranthos (photo) living in the
Atacama desert in Chile. Reproduced from ref. 128, https://doi.org/10.1038/
s41467-019-14236-5, under the terms of the CC BY 4.0 license https://
creativecommons.org/licenses/by/4.0/.
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state is much more efficient than vapor diffusion driven by a humidity
gradient.

This simple principle is harnessed by the plant Tillandsia, which lives in the
Atacama desert in Chile, to design an asymmetrical ‘‘water valve’’ on the surface
of its leaves128 (Figure 1.5f). The Atacama desert is probably the driest place on
Earth, with a humidity as low as 15%, which corresponds to a water potential
Catm¼� 250 MPa. However, a few days a year, fog from the coast brings a very
humid atmosphere full of tiny droplets of liquid water (CatmB0 MPa). These
droplets condense on the very hydrophilic surface of Tillandsia leaves and are
absorbed by the leaf cells through osmosis, due to their high concentration of
solute which creates a negative water potential Cleaf of about �1 MPa. Re-
markably, although the difference in water potential causing water absorption
during wet periods (DCabs¼ |Catm�Cleaf|¼þ 1 MPa) is a hundred times
smaller than the difference in water potential causing water evaporation during
dry periods (DCevap¼þ 249 MPa), the absorption flow rate is found to be a
hundred times greater.128 This corresponds to a difference in effective con-
ductance Q/DC between the humid and dry states a few thousands.

This strong asymmetry is explained by the existence of specialized structures
at the surface of Tillandsia’s leaves, called trichomes, where water exchanges
takes place.128 These trichomes consist of a row of empty dead cells covered by
a very thick cell wall, which separate the leaf cells from the atmosphere
(Figure 1.5f). During wet periods, the wall and dead cell cavities are completely
soaked with liquid water due to their hydrophilic nature; absorption then
occurs in the liquid state, through an osmotically driven bulk flow limited by
the leaf cell membrane permeability. By contrast, during the dry periods, the
liquid/vapor interface shifts within the trichome. Transport to the outside then
occurs by diffusion in the vapor form which, as we have seen, is very inefficient.

1.2 Solids
So far in the chapter, we have considered plants as rigid and static containers,
in which water and solutes are transported according to the laws of thermo-
dynamics and fluid mechanics. However, in order to absorb water, grow or
generate movement, the cells and tissues of plants must deform. This chapter
discusses the relationships between stress and deformation in the plant solid
body, and how this deformation is coupled with water transport. Other ex-
amples of fluid–structure interaction in plants are discussed in Chapter 2.

1.2.1 The Wall Stress and the Force Balance

1.2.1.1 Force Balance at the Cellular Level

The solid phase of plants is essentially made by the wall material that surrounds
all plant cells (Box 1.1 and Figure 1.1). Plant cells have two types of wall.155

Young growing cells and the mature cells of some tissues (leaf) are surrounded
by a thin primary cell wall made of stiff cross-linked cellulose microfibrils
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embedded in a highly hydrated matrix of polysaccharides (hemicelluloses and
pectins mainly),32,33,72 whose thickness h is typically between 0.1 mm and a few
mm. When growth stops, a thicker and more rigid secondary cell wall of lignin and
other woody components may be added, giving additional strength.

Under physiological conditions, the wall of living cells is stretched by the
internal, osmotically induced, turgor pressure (see Section 1.1). From a
mechanics perspective, a plant cell thus behaves like a pressurized thin shell
(Figure 1.6a). The tensile stress swall (force per unit area) stretching the wall
can be estimated by modeling the cell as a spherical shell of radius R and
uniform wall thickness h{R under a pressure difference P between the in-
side and outside. The balance of force on the half-shell imposes that the
external pressure force pR2P is equal and opposite to the tensile force in the
wall integrated along the wall perimeter 2pRhswall (Figure 1.6a), giving:

swall B
R

2h
P: (1:29)

This Young–Laplace-like relationship shows that the tensile stress in the wall
may be much larger than the turgor pressure due to the geometrical amplifi-
cation factor R/h. Taking a typical plant cell geometry R¼ 10 mm, h¼ 1 mm and
turgor pressure P¼ 0.5 MPa gives swall¼ 2.5 MPa, which is much larger than
the maximal tensile stress generated by animal muscle (TmuscleB0.2 MPa134).

Figure 1.6 Force and stress balance in plant tissues. (a) Force balance in a cell
viewed as a pressurized shell in order to compute the wall stress swall.
(b) Vertex model of a plant tissue (redrawn and adapted from ref. 26).
(c) Tissue-tension approximation: the epidermis, which is much stiffer
than the inner cells, carries most of the turgor-driven wall stress (red
arrows). The left-hand drawing is inspired by ref. 117. (d) Surface stress
distribution in the tissue-tension approximation, depending on the local
geometry of the organ.
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We will see that this stress level is enough to significantly deform the plant cell
wall and change its cell volume.

1.2.1.2 Force Balance in Plant Tissues

The balance of forces written here for an isolated cell can be generalized to a
tissue composed of several cells. In plants, each cell wall is glued to its neighbor
by an adhesive layer called the middle lamella, which prevents the cells from
sliding against each other or becoming detached (the situation of invasive
growth, discussed in detail in Chapter 7, is an exception). However, unlike the
case of an isolated cell, the balance of forces is generally not sufficient to
determine the stress distribution in all the walls of the tissue. Even when the
cell geometry and the turgor pressure are known, additional knowledge of the
constitutive relation of the cell wall is usually required (see Sections 1.2.2 and
1.2.4). In most situations, the complete computation of the tissue stress can
only be done by means of heavy and expensive numerical simulations, using
for example Finite Element Methods.15 Modeling plant solid mechanics at the
tissue and organ level thus often relies on simplified models.

The first class of model, broadly called cell-based models, considers the
discrete nature of cells with different degrees of approximation. Of these
methods the vertex model is one of the most popular.26,63,93 In its two-
dimensional version, the tissue is modeled as a collection of polygons rep-
resenting cells, in which linear segments representing the wall are in tension
and connected to vertices representing the wall junction (Figure 1.6b).
The global force balance implies that, at each vertex k, the (half) sum of the
pressure difference force at each face adjacent to k balances the sum of the
wall tension applied to k. A detailed presentation of vertex-like approaches is
given in Chapter 3.

The second class of model uses continuum mechanics to define an aver-
age stress tensor r which integrates both the wall stress and the turgor
pressure at the tissue level (see Chapter 3 for a detailed discussion of the
averaged stress tensor in plant tissue). In the absence of body forces, the
internal force balance is then given by:

r�r¼ 0. (1.30)

1.2.1.3 The Tissue–Tension Assumption: Plant Tissues as
Pressurized Shells

An approximation often used to describe stresses in plant tissues is based on
the fact that epidermal cells are generally much stiffer than the cells of the
underlying tissue, due to their small size and thick outer wall. The epidermal
layer is then assumed to support most of the turgor pressure generated by
the internal cells and the entire tissue is modeled as a pressurized
shell14,67,86 (Figure 1.6c). Using this tissue–tension assumption and neg-
lecting the bending stiffness of the epidermis, the force balance in the
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direction perpendicular to the epidermis reduces to a generalized Young–
Laplace equation:157

h
sk
Rk
þ s?

R?

 !
¼ P: (1:31)

Here (s8, s>) are the local principal in-plane stresses in the epidermis;
(R8, R>) are the local principal radius of curvature of the organ’s surface, and P
represents the turgor pressure of the cells in the bulk below the epidermis. This
equation must be complemented by the force balance in the plane of the shell
given by (@s8/@s8¼ 0) and @s>/@s>¼ 0, where (s8, s>) is the arc-length along the
principal directions. The pressurized-shell model has been widely used in the
context of plant morphogenesis to determine the tissue stress distribution in
organs of various shapes, such as the shoot apical meristem or in leaves63,69,138

(Figure 1.6d). For a spherical cap of radius R like the tip of a growing shoot
(R8¼R>¼R), the tissue stress is uniform and we recover the relationship (1.29):
s>¼ s8¼ PR/2h. For a cylinder of radius R like a stem or a root (R8¼N, R>¼R),
eqn (1.31) predicts that the perpendicular, hoop stress is twice the longitudinal
stress: s>¼ 2s8¼ PR/h. Finally, for a saddle crease geometry like at the cusp of a
bud (R>¼�ro0 and R8¼þRcr), one of the stresses is then compressive:
s>E�Pr/h while the other is in tension: s8Eþ PR/h (Figure 1.6d). Hence,
although the internal driving force – the turgor pressure – is isotropic, stress
anisotropy is more the rule than the exception in plants.

The tension of the epidermal tissue predicted by the pressurized shell
model is an example of residual stress, i.e. a non-zero internal stress in a
body at equilibrium and in the absence of external loading. Such residual
stresses are common in plants due to wall adhesion and the absence of
sliding between cells. In fact, any material inhomogeneity induced by gra-
dients of structure, elasticity, swelling rate or growth in a plant tissue is
susceptible to generate residual stresses, which may or may not be resolved
by tissue buckling or stress relaxation. The feedback between the tissue
shape, residual stress, and the biological response (growth law, mechano-
transduction) is central to plant morphogenesis and development.14

1.2.2 Elasticity

1.2.2.1 Hooke’s Law and Cell Wall Elasticity

As the plant wall is a living material, its mechanical description must be
approached with caution, especially for growing cells. However, as long as
the deformations are small enough (typically less than 5–10% in living cells),
and the timescales of observation not too large, the cell wall may be ap-
proximated as an elastic solid. The simplest elastic constitutive law is
Hooke’s law, in which deformations are reversible and proportional to the
applied stresses. For uniaxial deformation, Hooke’s law reduces to:

s¼ Eeel, (1.32)
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where eel¼DL/L is the elastic deformation or elastic strain and E (unit Pa) is
the Young’s modulus of the material (Figure 1.7a). The Young’s modulus is a
measure of the stiffness or compliance/softness of the material: the larger E
is the stiffer the material, while the lower E is the more compliant or
soft it is.

As a first application of Hooke’s law, we can calculate the reversible
volume change DV induced by a change in turgor pressure DP in a plant cell
modeled as a thin spherical shell of thickness h{R (Figure 1.7b). The force
balance implies swall¼ (R/2h)P (eqn (1.29)) and Hooke’s law can be written
approximately as followszz: swallEEwalleel¼ Ewall(R�R0)/R0, where Ewall is the
Young’s modulus of the wall and R0 the radius of the cell in its rest state
when the turgor pressure P¼ 0. Identifying these two expressions and
assuming small deformation (R�R0){R0 gives: DPE(2h/R)Ewall(DR/R)
E(2h/3R)Ewall(DV/V). The coefficient of proportionality of this pressure/
volume relationship is called the cellular bulk modulus Bcell (unit Pa):

Bcell¼ V
DP
DV
� 2h

3R
Ewall: (1:33)

The cellular bulk modulus determines the water storage capacity of the cells
and, as we shall see, controls the timescale of cell swelling. For xylem cells
under negative pressure, it also influences the dynamics of cavitation, as
discussed in Chapter 4. Importantly, the cellular bulk modulus is a measure of
the Young’s modulus Ewall of the cell wall, up to a geometric factor Bh/R.
Measurements of Bcell in a wide variety of cells has been made using the cell
pressure probe described in Box 1.2.30,80,151 A typical value for a growing plant
cell is BcellB5 MPa. Using eqn (1.33) for a plant cell of thickness hB1 mm and
radius RB10 mm gives EwallB75 MPa. This order of magnitude is consistent
with direct measurements of cell wall Young’s modulus using tensile assays,
which gives EwallB50–150 MPa for onion epidermal walls167 (Figure 1.7c).
The Young’s modulus of the wall is even larger in giant algal cells
(EwallB0.5–2 GPa125) and can exceed 25 GPa for wood fibers.57

Of course, the real mechanical behavior of the cell wall is more complex
than the ideal Hooke’s law considered here. First, the wall of living cells
typically exhibits a nonlinear strain-hardening behavior, i.e. an increase of
Young’s modulus with strain, together with a dissipative behavior (viscoe-
lasticity, plasticity),70,78,151,167 as found in other polymeric and gels materials
(Figure 1.7c). Second, the mechanical response of the cell wall is generally
anisotropic, with Young’s modulus being much larger in the direction parallel
to the mean orientation of the stiff cellulose microfibrils than in their per-
pendicular direction. Therefore, even for an isotropic loading such as that
imposed by the internal turgor pressure, the deformation of a cell is generally

zzFor this geometry and assuming an isotropic and homogeneous material, Hooke’s law in the
plane of the shell also involves Poisson’s ratio v of the material (�1rvr0.5). The exact ex-
pression of the cellular bulk modulus in this case is Bcell¼ [2h/(3(1� v)R)]Ewall; see ref. 87.
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non-isotropic. This anisotropy, combined with the microscopic heterogeneity
of the wall, makes the characterization of the wall by a single Young’s
modulus too simplistic. For example, wall stiffness deduced from indentation
methods using very small probes (sub-micrometer in size) are generally much
lower (of the order of few MPa98,166) than those obtained from tensile micro-
machines or inferred from the value of the cellular bulk modulus. This is
because indentation at nanoscales primarily probes the transverse elastic
properties of the wall and the polysaccharide matrix between the cellulose
nanofibrils, rather than in-plane global tensile properties.166

1.2.2.2 Elasticity of a Single Cell

The cellular bulk modulus (eqn (1.33)) characterizes the elastic response of a
plant cell to volume change, i.e. when the cell wall is forced to stretch further
during the deformation. It is interesting to study a situation of cell de-
formation without change of stretch, such as a single turgid cell squeezed
between two plates by a displacement d. When the internal turgor pressure P
is high and the cell wall thickness is thin (h{d), the problem is similar to
that of a squeezed elastic balloon (Figure 1.7d). The force then mainly
comes from the internal pressure acting against the plates: FBPpa2, where a
is the radius of the contact area between the cell and the plates. Assuming
that d is small compared to the radius of the cell R gives the geometrical
relation a2B2Rd and thus a linear relationship between the force and the
displacement: FB2pRPd. From this result, one can define an effective ex-
ternal stress acting on the cell s¼ F/(pR2), an effective elastic strain: eel¼ d/R
and thus an apparent Young’s modulus of the cell Ecell¼ s/eel given by:

EcellB2P. (1.34)

Interestingly, this apparent Young’s modulus depends on the turgor
pressure but not on the cell wall elasticity, a property that can be used to
infer the turgor pressure in experiments on single cells41,91 (see Box 1.2).
When the turgor pressure drops to zero, the apparent cell Young’s modulus
predicted by eqn (1.34) vanishes. In reality, there is always a small elastic
resistance coming from the bending of the cell wall, which we have ignored
previously. The force needed to bend a plate of size R and thickness h over a
displacement d is FBEwall(h

3/R2)d,87 yielding an apparent bending cell
modulus Ebending B[F/(R2)]/(d/R) given by:

Ebending B
h
R

� �3

Ewall: (1:35)

1.2.2.3 Elasticity of Plant Tissues

The previous analysis at the cellular level is helpful to understand the rela-
tionship between the macroscopic Young’s modulus of a multicellular turgid
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plant tissue and the microscopic properties of its constituents (Young’s
modulus of the cell wall, cell geometry). This link is, however, not
straightforward. Even for an idealized tissue composed of identical cells of
internal turgor P, wall thickness h and size R, dimensional analysis states
that the tissue Young’s modulus should depend on both the turgor pressure
and the cell properties through two independent dimensionless numbers,
namely P/Ewall and h/R. It is possible to simplify the prediction and derive
scaling relations when the turgor pressure is higher than the bending stiff-
ness (PcEbending) so that the cell walls are all pre-stretched and in tension.
As the liquid is incompressible, it is generally not possible to deform such a
tissue without further stretching the walls, unlike the case of an isolated cell

Figure 1.7 Elasticity. (a) Mechanical model of Hooke’s law. (b) Pressure–volume
relationship for a single cell in the elastic regime, characterized by the
cellular bulk modulus Bcell ¼V(DP/DV)E(h/R)Ewall. (c) Stress–strain rela-
tionship for onion epidermal walls during a loading and unloading cycle
in a tension assay. Adapted from ref. 167 with permission from AAAS,
Copyright r 2021 The Authors. Photo: Onion epidermal strip stretched
byB10% (image credit: Daniel Cosgrove). (d) Elasticity of a single plant
cell squeezed between two rigid plates, yielding an apparent cell Young’s
modulus EcellBP. (e) Elasticity of an ideal plant tissue. Under com-
pression, the cell wall is stretched and the turgor pressure changes,
yielding an effective tissue Young’s modulus EtissueBBcell.
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(Figure 1.7e). The tissue’s Young’s modulus Etissue is then dominated by the
stretching mode of deformation, as in the case of the cellular bulk modulus,
which gives:

Etissue BBcell B
h
R

� �
Ewall BfEwall; (1:36)

where fBh/R is the solid (wall) volume fraction of the tissue.
This scaling law is compatible with values of Young’s modulus of turgid tis-

sues EtissueB10 MPa and is valid as long as Ebending{P{Bcell. When the turgor
pressure drops to zero, for e.g. by plasmolyzing the cells in an osmotic solution,
the tissue modulus sharply drops because the cell walls are no longer stretched
and can bend easily. In real plant tissue, the situation is complicated by the fact
that the cell wall’s modulus Ewall itself is not constant but strongly varies with the
deformation (Figure 1.7c), yielding complex turgor pressure dependences. Note
that in all this discussion, we have assumed that the tissue remains always close
to full hydration, even when the turgor drops to zero. When the tissue further
loses water below the onset of plasmolysis, as during drying in air, the tissue
Young’s modulus Etissue may rise again because the solid fraction f increases,
until it reaches the wall Young’s modulus Ewall (see the discussion in Chapter 5
in the context of roots). More details on this question from the standpoint of
cellular materials can be found in ref. 57, 111 and 163.

1.2.3 Poroelasticity: From Cell to Tissue

So far, we have discussed the elastic behavior of a plant cell and tissue
without considering the flow of water within it. However, we have seen that
the cell wall and plasma membrane are permeable to water. Therefore, any
deformation resulting in a local change in turgor pressure, such as the
bending of a stem (Chapter 2) or the squeezing of a fruit, must induce a
movement of water within the medium. The same is true for a plant cell or
tissue immersed in a solution of different osmolarity. To restore the water
potential balance, the tissue must absorb or expel water and therefore
must swell or shrink elastically. This coupling between flow and deformation
in elastic porous media like plant tissues is described by poroelasticity or
poromechanics theory.34 As we shall see, poroelasticy sets the timescale of
response of plant tissues to sudden change of water potential, and thus
provides a bound for all water-driven movements.39,50,146

1.2.3.1 The Cellular Relaxation Time

We first consider poroelasticity at the cellular level. Consider an isolated
plant cell of initial volume Vi immersed in a bath at thermodynamic equi-
librium (Cbath¼Ccell,0¼ P0 – c0RT), where P0 is the initial turgor pressure of
the cell and c0 is its initial solute concentration (Figure 1.8a). The water
potential balance is suddenly perturbed at time t¼ 0, for example by
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suddenly changing the internal turgor pressure (a similar result holds for a
perturbation of solute concentration or external water potential). What is the
swelling/shrinking dynamics of the cell in response to this perturbation?

To answer this question, we use mass conservation and state that the
change in volume V of the cell per unit time is equal to the flow rate of water

Figure 1.8 Poroelasticity. (a) Cellular relaxation timescale tcell induced by a sudden
change of water potential (here a sudden drop of the cell wall Young’s
modulus). (b) Rapid swelling of the ring cells of the trap of the carnivorous
fungus Arthrobotrys brochopaga. Reproduced from ref. 114 with permission
from TIB, Copyright 1995. (c) Philip’s model of water transport in a
one-dimensional tissue (transmembrane transport only). (d) Molz and
Ikenberry’s model100 taking into account both the apoplast and transmem-
brane pathway. (e) Two-fluid continuum model for a poroelastic medium.
(f) Physical classification of plant movements showing the poroelastic
time tppL2 (blue line) and the inertial time tinertiaBL

ffiffiffiffiffiffiffiffiffiffi
r = E

p
(red curve),

below which no motion is possible.146
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through its surface S. Using eqn (1.13) of the water flux J across an ideal
semi-permeable membrane, this gives:

dV
dt
¼� J � S¼�LpðCcell �CbathÞS¼�LpðP � cRT �CbathÞS; (1:37)

where Lp is the hydraulic conductivity of the membrane. For small per-
turbations around the initial state, we can write: V¼ V0þ dV(t), S¼ S0þ dS(t),
P¼ P0þ dP(t) and c¼ c0þ dc(t). Since inertia is negligible, the mechanical
equilibrium is always satisfied and we can use the pressure/volume rela-
tionship dP¼Bcell(dV/V0) seen in Section 2.2 (eqn (1.33)). Finally, assuming
the conservation of solute during the dynamics implies: dc/c0¼� dV/V0.
At the lowest order, eqn (1.37) then reduces to a linear relaxation equation
for the turgor pressure:

ddP
dt
¼� 1

tcell
dP with tcell¼

V0

LpS0ðBcell þPÞ ; (1:38)

where tcell is the cell relaxation time and P¼ c0RT is the osmotic pressure.
Generally, BcellcP; writing V/SBR where R is the typical size of the cell
thus gives:

tcell B
R

LpBcell
: (1:39)

The cell relaxation time thus increases when the cell size increases or
when the membrane permeability or cell elasticity decreases. Typical
measurements in giant algal cells of R¼ 200 mm, Bcell¼ 30 MPa, and
Lp¼ 2�10�12 ms�1 Pa give tcell¼ 3.5 s.

The cell relaxation time sets the shortest response time of a plant cell to a
sudden (small) change of water potential: whatever the timescale of other
biochemical or genetic processes, e.g. ion flux, aquaporin opening, change
of wall mechanical properties, a cell cannot change its volume in a time
totcell. The cell relaxation time thus defines the fastest possible swelling/
shrinking movement at the cellular level.39,50 This hydraulic limit is
probably reached in some carnivorous fungi (e.g. Arthrobotrys brochopaga),
which have evolved special mycelial structures to capture nematodes115

(Figure 1.8b). In these organisms, the trap consists of a constrictive ring
composed of three connected cells of size RB5 mm. When a nematode
enters the ring, the cells rapidly inflate inward, wrapping the nematode in
less than 1/10 of second. The current hypothesis for this rapid movement is
that the cell wall of the ring is bi-composite, with a very rigid outer
wall surrounding a more flexible inner wall. Upon stimulation, the outer
wall suddenly breaks, which is equivalent to a sudden drop in the Young’s
modulus of the wall. To satisfy mechanical equilibrium and Hooke’s law,
[s ¼(R/2h)P¼ Eweel, see Section 2.2], the turgor must therefore drop
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abruptly, resulting in water being sucked in and the cell swelling very
rapidly due to its small size (tcell p R).

1.2.3.2 Water Diffusion in Plant Tissues

We can extend the previous approach to the tissue level. The simplest model
of a plant tissue is a one-dimensional chain of identical rectangular cells in
which water is transported from cell to cell through the cell plasma mem-
branes, without considering the cell wall between the cells (Philip’s
model,122 see Figure 1.8c). Using the water transport law (eqn (1.13)), the
mass conservation for the volume Vi of the cell i is given by (assuming
Cbath¼ 0):

dVi

dt
¼ AL0pðPiþ1 �Piþ1 � Pi þPiÞ � AL0pðPi �Pi � Pi�1 þPi�1Þ; (1:40)

where A is the cell area in the direction of the flow, L0p¼ Lp/2 is the effective
membrane hydraulic conductivity (the factor 1/2 comes from the fact that
two cell membranes has to be crossed per cell), Pi is the turgor pressure of
cell i and Pi¼ ciRT is the osmotic pressure of the cell i. Using again the
small perturbation approximation and the initial water potential equi-
librium condition, eqn (1.40) reduces to:

ddPi

dt
¼ 1

tcell
ðdPiþ1 þ dPi�1 � 2dPiÞ: (1:41)

where tcell¼ V0/[AL0p(BcellþP)] is the single cell relaxation time. Using the
continuum approximation : dPi(t)-dP(x,t), the set of discrete differential
eqn (1.41) becomes a single partial differential equation:

@dP
@t
¼ R2

tcell

� �
@2dP
@x2 ¼DPhilip

@2dP
@x2 ; (1:42)

with DPhilip¼R2/tcellBRLpBcell.
Eqn (1.42) corresponds to a diffusion equation for the relaxation of the

turgor pressure, with a diffusion coefficient DPhilip. The characteristic time
for water transport through a tissue of length L, called the poroelastic time tp,
is given by:

tp B
L2

DPhilip
B

L
R

� �2

tcell B
L2

RLpBcell
: (1:43)

The poroelastic time tp depends on the cellular hydraulic and mechanical
properties and scales with the tissue size as pL2.

The Philip’s model has been extended to take into account both the cell-to-
cell pathway and the apoplast pathway, i.e. through the cell wall (see Box 1.1)
by Molz and Ikenberry100 (Figure 1.8d). This model assumes that water can
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be transported from cell to cell by a gradient of cell water potential Ccell, and
into the wall by a gradient of hydrostatic pressure Pwall. Water can also be
exchanged perpendicularly between the wall and the cells. In this frame-
work, the water transport is described by two diffusion equations with a
coupling term:

@Ccell

@t
¼D1

@2Ccell

@x2 � C1ðCcell � PwallÞ
@Pwall

@t
¼D2

@2Pwall

@x2 þ C2ðCcell � PwallÞ
(1:44)

where D1¼DPhilip and D2¼ 2Bwallkwall/2Z is a water diffusion coefficient
in the cell wall, with Bwall the wall bulk modulus, kw the cell wall (Darcy)
permeability and Z the water viscosity. The coupling terms involve the
properties of the cell wall and cell membrane: C1¼ 6ALpðBcell þPÞ=V0 and
C2¼ 6LpBwall=fR, where f{1 is the wall volume fraction.

In practice, water diffuses much faster through the wall than from cell to
cell, because the wall is much more rigid than the cell (D2E100 D1). How-
ever, the small solid fraction of the wall and the large exchange surface
between wall and cells make the coupling between the two paths very strong.
In this situation, it can be shown that there is a local quasi-equilibrium
between the water potential of the wall and the water potential of the ad-
jacent cell, such that CcellEPwall¼Ctissue, where Ctissue is the water potential
of the tissue. The two coupled equations can then be reduced into a single
effective diffusion equation for water transport:

@Ctissue

@t
¼Dtissue

@2Ctissue

@x2 ; (1:45)

where Dtissue is an effective water diffusion coefficient given by:

Dtissue¼
D1C2 þD2C1

C1 þ C2
: (1:46)

Typical values for plant tissues (taking RB10/100 mm, LpB10�12 ms�1 Pa�1,
BcellB10 MPa, fB0.1, BwallB100 MPa, kwallB10�18 m2) gives Dtissue B
10�9–10�10 m2 s�1, in agreement with measurements.100,148 A three-
dimensional extension of this model, taking into account the transport in
vascularized tissues, can be found in ref. 130 and 131.

1.2.3.3 Poroelasticity in Continuum Media

When the effective medium approximation is valid, one can approach
water diffusion in plant tissues using continuum equations and the theory
of poroelasticy (see for e.g ref. 34). We derive here a simple one-
dimensional poroelastic model for a porous material made of an in-
compressible solid matrix of volume fraction f¼ dVS/dV, where dVS is the
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local volume of solid and dV the local total volume, infiltrated by an
incompressible liquid of volume fraction ff¼ dVf/dV ¼ 1�f, where dVf is
the local volume of fluid (Figure 1.8e). We note Us¼ð1=dVsÞ

Ð
dVs

dtU local
s

(resp. Uf ¼ð1=dVf Þ
Ð
dVf

dtU local
f ) the volume averaged velocity of the solid

matrix (resp. fluid). The conservation of mass written for the total medium
(solid and fluid) and for the solid phase gives two equations:

@

@x
fUs þ ð1� fÞUf
� �

¼ 0;

@f
@t
þ @fUs

@x
¼ 0:

(1:47)

Neglecting fluid and solid’s inertia, the conservation of momentum for the
total medium and for the fluid phase gives:

@

@x
ðss � PÞ¼ 0;

J � ð1� fÞðUf � UsÞ¼ �
kðfÞ
Z

@P
@x
:

(1:48)

Here, sS is the volume-averaged stress in the solid matrix corrected by a fluid
pressure term: ss¼ð1 = dVÞ

Ð
dVS

dtslocal
s þ fP, where P is the pressure in the

fluid phase (minus the atmospheric pressure by convention). This definition
of the solid stress, also called Terzaghi effective stress, ensures that the solid
stress is zero when the matrix is immersed in a fluid of uniform pressure
without deformation. The second equation for the fluid’s momentum
balance is Darcy’s law, where J is the volume flux of fluid, k is the Darcy
permeability of the porous medium and Z is the fluid’s viscosity.

The system is closed by adding a constitutive law for the mechanical
behavior of the solid phase. Assuming an elastic linear relationship between
stress and deformation (Hooke’s law), we can write:

ss¼ E
f0 � f
f0

� �
; (1:49)

where f0 is the solid fraction of the undeformed matrix, (f0�f)/f0 is the
one-dimensional elastic strain and E¼�f(dsS/df) is a one-dimensional
Young’s modulus of the solid matrix.

Linearizing eqn (1.47)–(1.49) around the rest state P¼ 0, US¼Uf ¼ 0 and
f¼f0 gives:

@f
@t
¼D @2f

@x2 with D¼ kE
Z
: (1:50)

One recovers a diffusion equation for the transport of water in the poro-
elastic medium, as obtained previously using a discrete description of the
plant tissue. The effective diffusion coefficient D is a function of the fluid’s
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viscosity Z, the Darcy permeability k and the elastic Young’s modulus E of the
porous matrix. The poroelastic time of water diffusion across a tissue of
size L is given by:

tp¼
L2

D ¼
ZL2

kE
: (1:51)

As for the cell relaxation time at the cell scale, the poroelastic time tp pro-
vides a bound for the fastest possible water-driven movements in plants at the
tissue and organ level.146 A plant motion occurring on a timescale t4tp can
rely on water transport, whereas systems with totp must use other
mechanisms (Figure 1.8f). The strong size dependence of the poroelastic time
(tp p L2) shows that hydraulic movements are increasingly less efficient in
terms of speed as the system size increases. We shall see in Section 2.5 how the
use of mechanical instabilities enables plants to overcome this hydraulic limit.

1.2.4 Growth

So far, we have dealt with the small deformation regime of plant tissues,
where strains are mainly reversible. We now address the opposite extreme
deformation regime corresponding to plant growth. Growth is the irrevers-
ible and sustained expansion of cells under physiological conditions.155 It is
obviously a very complex phenomenon that requires a continuous interplay
between biochemistry, mechanics and hydraulics to maintain homeostasis.
During growth, the cell wall must be continuously synthesized while it ex-
pands in order to maintain its mechanical and structural integrity. At the
same time, the absorption of water from the surrounding environment must
be precisely balanced, in order to allow the increase in cell volume and thus
the expansion.

The concept of growth usually encompasses cell division, cell differen-
tiation and the actual growth of cells, i.e. their increase in size. Cell division
occurs in localized regions called meristems. In plants, a distinction is made
between primary growth, responsible for the elongation of organs, and
secondary growth, responsible for the radial thickening of organs. Primary
growth is driven by meristems located at the tip (apex) of stems and roots,
and therefore called apical meristems. The meristem of secondary growth is
the cambium, a ring of cells around the axis of stems and roots. We focus
here mainly on primary growth and on the mechanical aspects of cell ex-
pansion, leaving aside the question of cell division and differentiation.
A discussion of growth from a modeling perspective is found in Chapter 4.

1.2.4.1 Cell Wall Rheology: The Lockhart–Ortega Model

The basic mechanics of plant growth have been revealed by seminal ex-
periments conducted on giant algal cells.60,125–127 First, growth requires the
existence of a minimum turgor pressure to occur, i.e. a minimum stretch or
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Box 1.4 Extension of poroelasticity to hygroscopic
media.

We have seen how the coupling between flow (Darcy’s law) and elastic
deformation (Hooke’s law) yields a diffusion equation for the transport of
water in a deformable porous medium. Similar fluid–solid couplings
occur in hygroscopic media like hydrogels, except that in the latter case
the strong chemical affinity between the water and the polymer chains
generates an additional osmotic driving force for the transport of water.
Hydrogels provide a simple model for the hygroscopic behavior of the
plant cell wall. We give below a one-dimensional version of the theory
developed by Bertrand et al. to describe the swelling dynamics of ideal
elastomeric gels.12

As in a classical poroelastic medium, the total stress in the gel can be
written as the sum of a solid stress sS and a fluid (pore) pressure P:

s¼ sS� P. (1.52)

For a gel the solid stress is of entropic origin and represents the elastic
stretching stress of the polymer chains network (as before, the isotropic
atmospheric pressure has been removed from the definition of P and s,
such that for a gel at atmospheric pressure: P¼ 0 and s ¼ 0). This elastic
contribution for uniaxial deformation can be written as:12

s1D
s ¼

RT
vp

1� f2

f

� �
; (1:53)

where f is the local volume fraction of solid and vp is the molar volume of
polymers in the dry state. Note that with this convention, the elastic stress
is null when the gel is dry (f ¼ 1, no water inside).

For an ideal elastomeric hydrogels, it is possible to decompose the
matrix potential (the water potential inside the gel) between a pressure
term and an osmotic term, by analogy with dilute solutions (see ref. 12):

Cgel¼ P þ Cos. (1.54)

The osmotic term is the derivative of the mixing Helmholtz free energy
of the gel per unit volume, with respect to change of volume. It can be
obtained from the Flory–Huggins theory of polymer solutions as:

Cos¼
RT
vw

fþ lnð1� fÞ � f
a
þ wf2

� �
; (1:55)

where vw is the molar volume of pure water in the reference state. The first
three terms in brackets reflect the entropy of mixing, where a is a measure
of the volume per polymer molecule relative to the volume per fluid
molecule in the mixture. The fourth term reflects the enthalpy of mixing,
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stress for the cell wall to yield. Second, above this yield pressure, the rate of
cell expansion, or growth rate, depends on the pressure difference between
the turgor pressure and the yield pressure. Third, when applying increments
of turgor pressure, the growth rate stabilizes at its steady value only after a
given relaxation time.

where w is a dimensionless interaction parameter.12 Once the water
potential is known, the generalized Darcy’s law is given by:

J � ð1� fÞðUf � UsÞ¼ �
kðfÞ
Z

@Cgel

@z
: (1:56)

By combining eqn (1.53)–(1.56) with the mass conservation (1.47), and
linearizing around a rest state, we recover a similar diffusion equation for
the evolution of f as derived previously (eqn (1.50)), except that the dif-
fusion coefficient now incorporates the osmotic contribution:

Dgel¼
kEgel

Z
with Egel¼� f

dðs1D
s þCosÞ

df
: (1:57)

We can apply this theory to estimate the swelling of a ‘‘water bead’’ ini-
tially in the dry state with a radius Rdry, and immersed in a bath of pure
water at atmospheric pressure where it reaches an equilibrium radius Req.
In this situation, swelling occurs in three dimensions, but the above one-
dimensional model can be applied to each direction independently, by
symmetry of the problem. At thermodynamic equilibrium, the water
potential of the gel is equal to that of the bath, such that:
Cgel(feq)¼ PþCos(feq)¼ 0. To be consistent with the one-dimensional
theory, feq must be understood as the linear solid fraction, not the
volume solid fraction, i.e. feq¼fdry�(Req/Rdry) with fdry¼ 1. On the other
hand, mechanical equilibrium implies that the total stress is null (the
bath is at atmospheric pressure), such that: s1D(feq)� P¼ 0. The linear
solid fraction of the water bead at equilibrium thus satisfies:

RT
vp

1� f2
eq

feq

 !
þRT

vw
feq þ lnð1� feqÞ �

feq

a
þ wf2

eq

� �
¼ 0: (1:58)

In practice, feq is small and vp/(avw)c1. At the lowest order, the swelling
ratio is thus given by:

Rfinal

Rdry
¼

fdry ¼ 1

feq
�

ffiffiffiffiffiffiffiffi
vp

avw

r
� 6; (1:59)

with typical values for hydrogels: aE250 and vw/(avp) E10�4 (see ref. 12).

38 Chapter 1



These observations are reminiscent of the behavior of yield-stress fluids in
soft matter, such as emulsions, polymeric gels or clays, which exhibit elastic
behavior below a yield-stress and viscous behavior above.6 From the mech-
anical standpoint, the simplest constitutive law of the plant cell wall is
therefore that of a Bingham fluid or an elasto-viscoplastic fluid. Such
Bingham model was first proposed by Lockhart in 196592 and then extended
by Ortega in 1985119 to take into account elasticity. For uniaxial deformation,
the Lockhart–Ortega rheology of the cell wall can be written as:

swall¼ Ewalleel and e¼ eel þ eir;

with
_eir¼ 0 if swall o sY;

_eir¼Fwallðswall � sYÞ if swall4sY:

(
(1:60)

In this model, the total strain in the cell wall e is decomposed into an elastic
part, eel, and an irreversible or plastic part, eir, which represents growth
(Figure 1.9a). Below a critical stress sY, the cell wall behaves as an elastic
solid (e¼ eel) and follows Hooke’s law with a Young’s modulus Ewall. Above
sY, the cell wall deforms irreversibly and flows with a strain rate _eir pro-
portional to the excess stress (swall� sY). The proportionality coefficient Fwall

between the strain rate and the excess stress is called the extensibility of the
cell wall and is associated with the irreversible creep of the wall under stress,
also called wall-loosening.166 Dimensionally, the cell wall extensibility is an
inverse viscosity [unit (Pa s)�1]. However, it should be kept in mind that the
extensibility reflects a complex process at the microscopic level, including
the addition of mass and a chemically mediated remodeling of wall material.
The extensibility strongly depends on the temperature – a sign that it is
under the control of cell metabolism127 – and can be modified under the
action of pH-dependent wall-loosening enzymes, such as expansins.25,32

Several molecular-scale2,42,132,167 or thermodynamic7 models have been
proposed to describe this active process, some of which recovering a
Bingham-like rheology at the macroscopic level (see Chapter 4 for a detailed
presentation of one of these microscopic models).

The simple uniaxial Lockhart–Ortega model (1.60) has been extended to
anisotropic cell wall under multiaxial stress, either by assuming an
anisotropic extensibility40 or an anisotropic elasticity by analogy with fiber-
reinforced composite materials.15,18 A more complex constitutive law
explicitly accounting for the reorientation of microfibrils under flow has
been also developed, by analogy with liquid crystals.43 For such tensorial
laws, the question of whether the cell wall yields above a critical strain eY or a
critical stress sY, which is equivalent in the one-dimensional Lockhart
model, is of importance, as the principal direction of strain may not coincide
with the principal direction of stress.117 For elongated cells and organs for
which s>4s8 (see Section 1.2.1), the direction of growth is mainly longi-
tudinal and thus perpendicular to the maximal stress, suggesting that the
yield condition in terms of strain is more relevant.
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Finally, a growing body of evidence suggests that the cell wall rheology is
regulated not only by molecular signals, but also by the mechanical state of
the wall itself.159 A key molecular actor of this feedback is the cortical
microtubules, whose orientation determines the orientation of the cellulose
microfibrils in the wall, and thus wall anisotropy (see Box 1.1. and
Figure 1.1b). Experiments show that the orientation of the microtubules
aligns with the direction of maximal stress in the wall, generating a feedback
loop between the organ’s shape (determining stress direction) and material
anisotropy (determining growth direction and thus shape)63 (Figure 1.9b).
This mechanical feedback is taken into account in the most recent rheo-
logical models118 but the precise transduction mechanism is still de-
bated.64,117 More generally, how mechanics modified growth, either through
direct effect on the wall stress or through the perception and transduction of
internal and external mechanical signals – a process known as thigmo-
morphogenesis – is a very active area of research in plant biophysics.
A discussion of these aspects in the context of root growth in given in
Chapter 5.

Figure 1.9 Growth and cell wall rheology. (a) One-dimensional mechanical repre-
sentation of the elasto-viscoplastic rheology of the cell wall. (b) Mechan-
osensing (red arrow) of the wall stress by the cortical microtubules
(brown) fixing the orientation of cellulose microfibrils (green) generates
a mechanical feedback loop between shape and growth. (c) Unidirec-
tional growth of a single cell immersed in a water bath (Lockhart’s
model).
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1.2.4.2 Growth of a Single Plant Cell

The Lockhart–Ortega rheology can be used to describe the unidirectional
and uniform steady growth of an isolated cell, modeled as a cylinder of fixed
radius R and length L(t), immersed in an external bath of water potential
Cbath (Figure 1.9c). This situation typically corresponds to the growth of the
giant internode cells of the green algae Chara or Nitella. For these cells, the
wall expansion is evenly distributed over the wall surface and growth is
uniform along the cell, a mode of growth called diffuse growthyy. Moreover,
the cellulose microfibrils in these cells run mainly circumferentially,
restricting growth in the radial direction and promoting growth in length.

In this cylindrical geometry, the balance between the turgor pressure and the
wall stress implies that the longitudinal wall stress is given by swall¼ PR/(2h),
where h is the wall thickness and P the turgor pressure. For a steady state of
growth the elastic strain eel is constant. The growth strain rate, also
termed relative elongation rate (RER) or relative elementary growth rate (REGR)
in the plant science community, is then given by _e¼ _eir¼ (1/L)(dL/dt). Combining
the force balance and the Lockhart–Ortega wall rheology (1.60) thus implies:

1
L

dL
dt
¼FðP � PYÞ; (1:61)

where F¼ (FwallR/2h) is an effective extensibility defined at the cellular level
and PY¼ 2hsY/R is the yield turgor pressure for growth. This first Lockhart’s
equation must be complemented by a second equation for water transport.
Indeed, for cell expansion to be possible, an inward flow of water must
compensate for the increase in volume, which requires a difference in water
potential between the inside and outside of the cell. Using the water trans-
port eqn (1.13), the second Lockhart equation is:

dL
dt
¼� 2L

R
LpðP � cRT �CbathÞ; (1:62)

where Lp is the hydraulic conductivity of the membrane and c the cell solute
concentration. To close the system, a third Lockhart equation should be
added to describe the temporal evolution of the solute concentration.105 We
assume here that growth is slow enough that osmotic balance is maintained,
so that solute concentration remains constant. The solution of (1.61–1.62) is
therefore:

1
L

dL
dt
¼

2Lp

R
cRT � PY

1þ
2Lp

RF

and P¼
PY þ

2Lp

RF
cRT

1þ
2Lp

RF

: (1:63)

yyDiffuse growth is opposed to tip growth, characterized by a highly localized wall expansion at
the tip of the cells. Tip growth is the mode of growth of invading cells like root hairs or pollen
tubes and is discussed in Chapter 7.
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Two limiting regimes can be considered depending on the value of the
Lockhart’s parameter: L¼ 2Lp/RF. For Lc1 (small extensibility, large
membrane permeability), eqn (1.63) becomes:

1
L

dL
dt
� FðcRT � PYÞ and P � cRT : (1:64)

This regime is called the extensibility-limited regime. In this case the growth
rate of the cell is set by how fast the cell can extend its cell wall (embedded in
the parameter F), not by its ability to take up water across the plasma
membrane. The water potential balance is then almost satisfied and the
turgor pressure is simply given by the osmotic pressure cRT. Growth of most
plant organs is assumed to operate in this extensibility-limited regime. From
typical growth rate in young shoots _eB0.1� 1 h�1 (see ref. 144) and using
standard values cRTB0.5 MPa, PYB0.3 MPa31 and R/2hB10, we find that
the cell wall ‘‘viscosity’’ is 1/FwallB10–100 GPas – a value close to the
viscosity of ice!54

For the opposite regime L{1 (large extensibility, small membrane per-
meability), the Lockhart eqn (1.63) becomes:

1
L

dL
dt
�

2Lp

R
ðcRT � PYÞ and P � PY: (1:65)

In this conductivity-limited regime, the extensibility of the cell is so large
that the growth rate is limited, not by the cell-wall extensibility, but by the
water uptake resistance set by the plasma membrane. The turgor pressure is
then poised at the yield pressure PY, not at the osmotic pressure cRT ,
meaning that a significant water potential gradient exists between the inside
and outside of the cell.

1.2.4.3 Extension of Lockhart’s Model to Tissues

Since the pioneering work of Molz and Boyer,99 the Lockhart equations have
been extended to multicellular tissues using cell-based models to couple
water transport and growth.26 A scaling analysis of the problem can also be
made using the same kind of continuum approach as we used for
poroelasticty (Section 2.3). Consider a tissue of size L growing at a constant
rate _e. Volume conservation requires a water flux to sustain growth, which is
given by: J¼ (1/S)dV/dt¼ _eL, where V is the volume of the growing tissue and
S the cross-section perpendicular to the flow. From Darcy’s law, this water
flux must be induced by a turgor pressure gradient across the tissue (as-
suming uniform solute concentration) given by: (DP/L)¼ (Z/k) JB(Z/k)_eL,
such that:

_eB
k
Z
DP
L2 : (1:66)
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This relationship is the tissue version of the second Lockhart equation
(1.62) on water transport. On the other hand, the force balance between
the internal turgor pressure and the cell wall still holds at the tissue level,
such that sB(R/h)P. Using the Lockhart–Ortega rheology for the wall in
steady state, we recover the same relationship as the first Lockhart’s
equation:

_eBF(P� PY). (1.67)

This analysis shows that the gradient of turgor pressure induced by tissue
growth is negligible if DP{P� PY, which using eqn (1.66) gives:

Ltissue¼
k

FZL2 c 1: (1:68)

The dimensionless number Ltissue is the tissue equivalent of the Lockhart
number L defined at the cellular level. For Ltissuec1, the tissue growth rate
is limited by cell-wall extensibility while for Ltissue{1, it is limited by water
conductivity. Interestingly, this ‘‘tissue Lockhart number’’ depends not only
on the mechanics and hydraulic properties of the tissue but also on the
system size, with a strong size dependence LtissuepL�2. It has long been
assumed that growth in plants operates in the extensibility-limited regime
and that growth-associated water potential gradients were small, with the
exception of fast-growing tissues such as coleoptiles or roots.16,17,30,31,99,148

However, recent measurements of turgor pressure at cellular resolution in
the shoot apical meristem of Arabidopsis revealed high cell-to-cell pressure
heterogeneity, which can only be predicted by taken into account water
transport in addition to wall mechanics.93 Water conductivity was also
shown to strongly influence the emergence of lateral roots in Arabidopsis.121

Therefore, the role of water conductivity in the control of growth and de-
velopment might be more important than previously anticipated, even at
small scales.

1.2.4.4 Differential Growth in Rod-like Organs: Plant Tropisms

In the previous section, we considered uniform and unidirectional growth.
When growth varies spatially, kinematic constraints may lead to a change in
growth direction and thus in organ shape. We consider here the important
case of differential growth in a slender, rod-like body, such as a plant shoot
or stem, which leads to the bending of the organ.9,105,144

To address this question, we model the shoot by a thin rod of length L(t)
and constant radius R{L, restricting its shape to a curve in two dimen-
sions for simplicity. The spatio-temporal shape of the rod is then fully
described by the angle y(s,t) made by the rod with the vertical axis, where
s is the arc length from the fixed base and t is time (Figure 1.10a). By
definition, the local curvature of the rod is: C(s,t)¼�@y/@s. Here the con-
vention is such that curvature is positive when the shoot angle decreases
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away from the base, as in Figure 1.10a. The growth kinematics are char-
acterized by the velocity field v(s, t) of the different material points along
the rod. A portion ds of the rod at position s and time t increases to a length
(1þ _e dt)ds at time tþdt, where _e¼ @v/@s is the local growth rate. Similarly,
the Lagrangian change of curvature during dt, i.e. following the material
displacement, is:

dC
dt
¼ @C
@t
þ vðs; tÞ @C

@s
: (1:69)

We now assume that the growth rate not only varies along the rod but also
across the thickness of the rod, from a value _e2 at the bottom side of the
rod to a value _e1o_e2 at the upper side (Figure 1.10a). During dt, the lower
side length thus expands to (1þ _e2dt)ds while the upper side expands to
(1þ _e1dt)ds. As shown in Figure 1.10a, this differential expansion must
induce a small change of rod curvature dC. Geometry imposes that:
[(1þ _e2dt)ds]/(rþR)¼ [(1þ _e1dt)ds]/(r�R), where r¼ (1/dC)cR. At first
order, the curvature change induced by differential growth is then
given by:

R
dC
dt
�

_e2 � _e1

2
: (1:70)

Combining this kinematic growth relation with the expression (1.69) of the
Lagrangian derivative gives:

R
dC
dt
¼R

@C
@t
þ vðs; tÞ @C

@s

� �
¼ _eD;

with D¼
_e2 � _e1

_e1 þ _e2
and _e¼

_e1 þ _e2

2
:

(1:71)

This equation shows that change of curvature in a thin elongated organ is
driven by differential growth, here expressed in terms of the relative growth
asymmetry D¼ (_e2� _e1)/(_e2þ _e1). For a given D, the rate of change of curva-
ture is set by the mean growth rate _e¼ (_e2þ _e1)/2¼ @v(s,t)@s. Note that local
change in curvature impacts the entire organ orientation because the rela-
tionship between angle and curvature is non-local:

yðs; tÞ¼ �
ðs

0
Cðs0; tÞds0 þ y0: (1:72)

where y0 is the angle of the shoot at the base.
Eqn (1.71) shows that maintaining a steady curved shape in a growing

organ (@C/@t ¼ 0) requires a subtle spatio-temporal regulation of differential
growth to satisfy: v(s,t)R(@C/@s)¼ _e(s,t)D(s,t) – an idea first put forward by
Wendy Silk (see ref. 145). Such steady growing shapes are found in many
seedlings145 and also in some compound leaves.129 In these examples, the
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end of the shoot or stem exhibits a hook shape that remains steady and at a
fixed distance from the plant apex, all along the growth. Although the hook
shape appears steady, each tissue element must follow a complex bending
and unbending growth pattern as it moves from the tip, in order to comply
with kinematics (see Figure 1.10b).

Bending induced by differential growth is also the basis of most tropic
movements in plants,58 i.e. the directed motion in response to external
stimuli such as light (phototropism), touch (thigmotropism) or gravity
(gravitropism), which we discuss below. Plants detect gravity using special-
ized cells (called statocytes), in which starch-rich particles (called amylo-
plasts or statoliths) sediment under gravity to form miniature ‘‘granular’’
piles at the bottom of the cell101,103,109,158 (see Figure 1.11 and Box 1.5).
When the cell is inclined, the statoliths move toward the side of the cell even
at a small inclination, unlike sand grains, because statoliths are fluidized by
the cytoskeleton’s activity (see ref. 13 and Box 1.5). The resulting asymmetric
position of statoliths within the cell triggers a complex molecular pathway,
leading to the generation of a growth-hormone gradient across the thickness

Figure 1.10 Differential growth in slender organs. (a) Kinematic description of a
growing rod-like organ and bending induced by differential growth
across the thickness. (b) Steady hook shape in a growing shoot, showing
the growth and spatio-temporal path of a group of cells (orange region)
produced at the apical meristem (red spot) and advected outside the
growth zone. (c) Differential growth on a two-dimensional, leaf-like
organ induces the generation of a positive (left) or a negative (right)
Gauss curvature depending on the growth gradient.
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(the growth hormone in plants is called auxin) and thus to differential
growth and organ curvature.

The gravitropic response of plant shoots is inclination-dependent and
follows a sine-like shape, such that:

Dgravity ¼
_e2 � _e1

_e1 � _e2

� �
gravity

¼ bsiny; (1:73)

where b is a dimensionless parameter characterizing the gravitropic sensi-
tivity of the plant. This sine-law has classically been interpreted as the
consequence of a force-sensing mechanism at the cellular level, the
projection of the weight of the statoliths along the side of the cell being
proportional to sin y. However, recent experiments have shown that the
response is independent of the gravity intensityzz, suggesting that the
gravitropic stimulus is the position of the statoliths within the cell, not their
weight.24,124

Surprisingly, when the expression (1.74) of the gravitropic response is
introduced in eqn (1.71)–(1.72) (without the advective term) to predict the
gravitropic bending of an inclined stem, an unrealistic spatio-temporal dy-
namics is found. Instead of converging toward the vertical, the tip of the
stem keeps oscillating back and forth, with regions of increasing curvature
accumulating close to the base of the stem.8 This paradox was solved by
adding to the gravitropic law (1.74) an additional term proportional to the
local curvature, which counteracts the generation of curvature induced by
gravity sensing:8

Dprop¼
_e2 � _e1

_e1 þ _e2

� �
prop
¼ � gRC; (1:74)

where g is a dimensionless parameter. Such tendency of a stem or a shoot to
perceive its own curvature and straighten was coined ‘‘autotropism’’ in early
studies (see ref. 21 and 48 and older references therein) and latterly ‘‘pro-
prioception’’, by analogy with the sense of body perception in vertebrates.8

In plants, the mechanism of proprioception is still debated104,116 but its
reality is well supported, in particular by experiments in microgravity en-
vironments which show that an initially curved stem spontaneously
straightens during growth. Writing for simplicity sin yEy and neglecting the
advection term in eqn (1.71) gives for the evolution of the curvature:

R
@C
@t
¼ _eðby� gRCÞ: (1:75)

zzThis observation is valid as long as gravity intensity is high enough. In very low gravity en-
vironments (typically go10�2 m s�2), the avalanche time of the statoliths may become longer
than the growth timescale _e�1 so that statoliths have not the time to reach their equilibrium
position before the plant bends. The gravitropic response then decreases and becomes null
without gravity, as expected.
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This mathematical model of gravitropism, which includes both grav-
iperception and proprioception, was first introduced by Bastien et al.8 and
coined the ‘‘AC model’’ (for Angle–Curvature). Unlike the purely gravitropic
model, the AC model exhibits a steady solution (@tC¼ 0) given by
y(s)¼ y0exp(�s/Lc), where y0 is the inclination of the stem at the base and
Lc¼ gR/b is a bending length scale. This steady shape is controlled by the
balance number B:

B¼ L
Lc
¼ Lb

gR
� O

Dgravity

Dprop

� �
; (1:76)

which quantifies the ratio of the gravitropic term to the proprioceptive
term. For Bc1 (Lc{L), graviperception is large compare to proprioception
and the plant rapidly recovers the vertical after a bending length Lc. In the
opposite situation B{1 (LccL), proprioception overcomes graviperception
and the plant does not recover the vertical over its length L. Note that the
balance number B not only controls the final shape of the plant but also its
dynamics toward vertical: for large B, the tip of the stem oscillates
several times around the vertical before converging, which is not the case
for small B.8

The previous discussion shows that the perception of gravity alone
through the sine law (1.74) does not enable a proper posture control in
plants, and that an additional straightening or proprioceptive mechanism is
needed. The AC model constitutes the building block from which additional
effects may be considered. For instance, the gravitropic response exhibits
several timescales not included in the simple sine law, such as a delay time
before the beginning of bending and a memory time that filters rapid
changes in inclination.23 The purely kinematic model presented here can
also be extended to add mechanical effects, such as elasticity and stem
sagging under its own weight.27 In this case, the actual (or observed)
curvature C contains an elastic contribution due to the self-weight. It must
thus be distinguished from the natural88 curvature C0 induced by differ-
ential growth and described by eqn (1.71). Finally, other kinds of tropisms
and plant movements may be included in this framework, such as photo-
tropism, thigmotropism or circumnutation – the spontaneous oscillation
and circular movements of the tip of stems.1,10,106 Extension to three-
dimensional growing rods, including torsion and helicity, are also avail-
able (see ref. 106 and references therein).

1.2.4.5 Growth in Thin Sheets and Morphogenesis

We have seen how differential growth across the thickness of a rod-shaped
organ like a stem induces a change in natural curvature. When the organ

88The natural curvature is also called the intrinsic, or the spontaneous, curvature.
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Box 1.5 Gravity sensing in plants: an active
granular flow problem?

From tiny shoots to large trees, all plants are able to sense gravity
and reorient their growth toward the vertical direction set by
the gravitational field. This ability is important at early stages of
development for roots to anchor in the soil and shoots to find light.
It is also key throughout the plant’s life, for the plant to maintain
its upright position and not fall against its own weight. The detection
of gravity in plants is known to originate in specialized cells
(statocytes) containing dense starch grains (amyloplasts or statoliths);
but how cells detect the statoliths and how this sensing is converted
into a bending growth response at the organ level are still largely open
questions (see, for example, the reviews101,103,105,109,158).

Recent experiments studying the gravitropic response of shoots to
hyper- and hypo-gravity conditions have shown that plants are not
sensitive to the intensity of the gravity field, but only to the inclination
against the direction of the gravity vector.24,124 The gravisensor in
plants is thus a position sensor, not a force sensor. This finding is
surprising because it implies that the pile of statoliths at the bottom of
the cell move and respond to even the tiniest tilt. At first sight, such a
behavior contradicts our knowledge of the physics of granular media,
which stipulates that an assembly of grains cannot move below a crit-
ical avalanche angle set by friction and steric constrains between
particles.3

The solution to this conundrum comes from the in-situ visualization of
statolith movement in response to a large cell tilt13 (Figure 1.11b). Ini-
tially, statoliths flow in bulk like a granular ‘‘avalanche’’, with a pile angle
that rapidly relaxes toward a critical angle yc, as expected for a classical
granular medium. However, over a long time the behavior strongly con-
trasts with that of a classical granular medium. Instead of being stuck at
yc, the statolith pile keeps evolving and slowly creeps until its free surface
recovers the horizontal, as a liquid would do. Investigation of statolith
motion at the particle level reveals that this liquid-like behavior comes
from the agitation of the statoliths, which helps the grains to unjam and
flow even for very small inclinations. This agitation comes from cellular
activity and not thermal agitation, as confirmed by comparison with the
behavior of passive Brownian particles in the same geometry. It is likely to
involve the dynamics of the actin–myosin network in the cytoskeleton,
and its interaction with statoliths.

The remarkable sensitivity of plants to gravity therefore relies on an
active granular material at the cellular level.13 This strategy, which com-
bines local active noise and signal integration of statolith position, shares
similarities with other biological sensors, such as hair cells108 or tactile
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whiskers.28 Understanding the physics of such active particulate media is
an exciting soft matter topic in itself, in addition to the biological
motivations.

Figure 1.11 (a) Signaling pathway of plant gravitropism (adapted from ref. 90). The
plot shows the gravitropic response of wheat coleoptiles to steady
inclination24 (sine law). (b) Flowing behavior of the plant gravisensors
(statoliths). (i) Gravisensing cells of wheat coleoptile. (ii) In-situ visual-
ization of statolith motion in response to a large tilt. The angle of
the free-surface of the statolith pile (ys) first decreases rapidly toward a
critical angle yc, then slowly creeps in order to recover the horizontal,
as a liquid would do (iii, plot in lin-lin and log-lin scale). This
pseudoliquid behavior comes from the agitation of statoliths by cell
activity (blue trajectories in top-left image). Adapted from ref. 13,
https://doi.org/10.1073/pnas.1801895115, under the terms of the CC
BY 4.0 licence, https://creativecommons.org/licenses/by/4.0/.
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remains thin but extends in two directions, such as in a flat leaf, two
different types of differential growth-induced shapes can occur***.

The first mode of deformation is similar to the one we just saw in the case
of a one-dimensional stem and comes from a differential growth across the
thickness of the sheet. In this situation, a natural curvatureyyy C0 in the dir-
ection of differential growth is generated, causing the sheet to curl into a
cylindrical shape. Many plant leaves, for example grass blades or corn leaves,
exhibit such rolled shapes induced by a differential expansion across the leaf
thickness. However, when the leaf is curved in two perpendicular directions
like a shell, bending in one direction is coupled to the other direction
through the generation of in-plane tissue stresses, causing subtle rolling/
unrolling mechanisms.102

The second type of deformation is associated with differential surface
growth: different regions of the sheet grow at different rates (Figure 1.10c).
In general, these spatial variations in growth cannot happen without gen-
erating in-plane compressive stresses. For a thin sheet of lateral size L and
thickness h{L, the energy cost of such compressive deformation is very high
and the system prefers to bulge out of the plane. A non-zero natural Gauss
curvature k0

G is then createdzzz. When the growth is larger in the center of the
sheet than at the edges, the generated Gauss curvature is positive k0

G40, i.e.
the sheet deforms into a dome shape. In contrast, when the edges grow
faster than the center, negative Gauss curvature k0

Go0 is created, resulting in
rippling edges and saddle-like shapes. Many flat organs in plants and algae,
such as leaves, blades or flowers, show this type of rippling at their edges,
induced by faster growth at their periphery.29,83,142,143

Overall, geometry and mechanics, in addition to genetics, play a primary
role in morphogenesis and development – an idea promoted by pioneering
scientists such as d’Arcy Thompson156 and Paul Green.61 This role can be
purely ‘‘passive’’, as when differential growth generates out-of-plane bending
to satisfy geometric compatibility. It can also be ‘‘active’’ and directly influ-
ence the molecular and genetic machinery of the plant, as we have seen in the
case of the cell wall, where the stress in the wall controls the orientation of the
cortical microtubules, which in turn affects wall anisotropy63 (Figure 1.9b).
Understanding such feedback between mechanical signals and biology is one
of the main current challenges in plant morphogenesis.139

***For general textbooks on the elasticity of plates and shells, see for example5,95,157 A mech-
anical description of thin growing sheets in the context of differential geometry can be found
in ref. 44.

yyyThe natural (or intrinsic, or spontaneous) curvature is the curvature that remains when all
external forces, geometrical frustrations or in-plane stresses are released. Experimentally, the
natural curvature along a given direction in a plate or shell is found by cutting a thin strip in
this direction and measuring the resulting curvature.

zzzThe Gauss curvature of a surface is defined by kG¼C1�C2, where C1 and C2 are the two
principal curvatures of the surface (i.e. the two extrema curvatures at the surface point con-
sidered). In practice, the natural Gauss curvature is found by cutting small discs onto the
surface and measuring the two principal curvatures.
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1.2.5 Mechanical Instabilities and Fast Movements

Throughout the chapter we have seen how plants, although lacking muscle,
use gradients of water potential to transport water and perform various
swelling or growth movements. The timescale of these water-driven move-
ments is, however, constrained by a physical limit: for a cell or a tissue to
swell, water must be transported from one place to another within the soft,
porous plant material. We have seen that the shortest response time of this
process is set by the cell relaxation time at the cellular level, and by the
poroelastic time at the tissue level (Section 1.2.3). These timescales depend
on the hydraulic and elastic properties of the medium and, more import-
antly, on the size of the system: the larger the organ, the greater the time
required to produce purely hydraulic motion.

Plants have developed a simple and elegant strategy to overcome this
hydraulic limit: the use of mechanical instabilities.50,52 The general principle
is as follows: during a first ‘‘slow’’ phase, elastic deformation is stored in the
cell wall due to a slow modification of the hydraulic or elastic properties (e.g.
a water movement due to evaporation or active solute transport, a change of
the mechanical properties of the wall, etc). However, this elastic energy is not
released because there exists an ‘‘energy barrier’’ in the system. When the
stored elastic energy reaches a critical point, the energy barrier is crossed
and a second ‘‘fast’’ phase occurs where the deformation in the wall is
rapidly released and converted into a fast movement.

The existence of an energy barrier is the key ingredient for developing a
mechanical instability. This barrier can be of molecular origin, as for bubble
nucleation in a liquid under negative pressure or crack nucleation in a solid
under tension. In this case, the cohesion between molecules is associated with
an energy cost to create a new surface – the bubble or crack – in the medium.
When the size of the bubble (or length of the crack) is large enough, the release
of bulk energy is larger than the cost of surface energy; the bubble (or crack)
then expands suddenly. Fracture propagation and its associated explosive
elastic energy release is used by many plants to disperse their seeds or
spores.37,46,74,76,133 The cavitation of bubbles in a liquid under tension, so
harmful for trees, has been harnessed by some species of ferns to catapult their
spores and thereby generate the fastest movement in the plant kingdom.81,113

The rich physics of cavitation in the context of plants is discussed in Chapter 4.
Mechanisms based on fracture propagation or bubble cavitation are one-

shot, irreversible fast movements: once the stretched tissue is torn or the
metastable liquid transformed into vapor, no resetting of motion is possible.
A more flexible strategy to actuate reversible rapid movements consists of
using an elastic or snap-buckling instability. A snap-buckling instability is the
discontinuous transition between two states of minimal elastic energy in a
slender body. In this case, the energy barrier comes from the existence of a
geometrical constraint: the system cannot transit from one state to the other
without passing through an intermediate shape that generates in-plane
stresses. We have seen that for thin bodies these in-plane stresses are

Basic Soft Matter for Plants 51



associated with an important elastic energy cost. Elastic energy is then ac-
cumulated until it is so large that the barrier is crossed and the shape
suddenly snaps through.

This principle is used by the carnivorous plant Dionaea muscipula (best
known as the Venus flytrap) to trap insects53,123,136 (Figure 1.12a). The trap of
the Venus flytrap consists of two doubly curved, shell-like lobes, which are
convex (curved outward) in the initial state. Because bending such a shell
requires crossing a stretching energy barrier (see below), the trap can store
elastic energy without closing. However, when the inner hairs are triggered,
the plant actively changes the natural curvature of its lobes in one direction.
This is enough to cross the elastic energy barrier, leading to a sudden change
of curvature and closure.

It is possible to quantify this mechanism using a minimal one-
dimensional elastic energy model and scaling arguments.53 Let consider a
shell of typical size L, thickness h and Young’s modulus E. From Hooke’s
law, the total elastic energy of the shell scales as: EelB 1

2 EVe2 , where VBhL2

is the volume of the shell and e is the characteristic elastic strain associated
to the deformation of the shell. When the shell is bent, two different modes
of elastic deformation occur.87 The first one is associated to pure bending,
i.e. the fact that changing the curvature of a plate with respect to its natural
curvature induces a gradient of elastic deformation within the thickness
of the shell. The elastic strain associated to this bending mode is:
ebendBh(C�C0), where C is the actual curvature and C0 is the natural
curvature. The corresponding bending elastic energy is thus:

EbendBEh3L2(C�C0)2. (1.77)

The second mode of deformation is related to geometrical incompatibility: it
is not possible to bend and reverse the curvature of a shell without stretching
or compressing its surface. This is a direct consequence of the Gauss’ The-
orema egregium,5 which implies that a surface cannot change its Gauss
curvature without changing the natural length, or metric, of its surface.
To estimate the stretching deformation estretch induced by such a change of
Gauss curvature, let consider a shallow shell of radius of curvature rcL,
which is deformed into a flat disc (Fig. 1.12b). Assuming that the length L
along the diameter of the shell is conserved, the shell’s perimeter must in-
crease from pL0, where L0 is the initial projected diameter, to pL, so that
estretchB(L� L0)/L0. Pythagoras’s theorem implies that D2þ (L2

0/4)¼ L2/4 and
(r�D)2þ (L2

0/4)¼ r2. Since D{r and D{L, we have at first order:
estretchB2D2/L2BL2/(32r2)pL2k0

G, where k0
G¼ 1/r2 corresponds to the natural

Gauss curvature of the shell. Here the Gauss curvature of the deformed state
is zero since the disc is flat. This relationship can be generalized to a de-
formed state of arbitrary non-zero Gauss curvature as: estretchBL2(k� k0

G),
where kG¼C2 is the Gauss curvature of the deformed state. Therefore, the
elastic energy associated to the stretching mode is given by:

EstretchBEhL6(kG� k0
G)2 ~ EhL6(C2� k0

G)2. (1.78)
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Figure 1.12 Rapid plant movements induced by a snap-buckling instability. (a) The
carnivorous plant Venus flytrap (Dionaea muscipula) in the open (left
image) and closed (right image) states. Bottom panel: three-
dimensional shape reconstruction of the lobe during closure. Left
panel: spatially averaged mean curvature of one lobe as function of
time, showing a sudden transition from convex (C40) to concave (Co0)
(adapted from ref. 53). (b) Sketch of a shallow shell stretched into a flat
disc, in which the shell’s diameter L is conserved but the perimeter
increases. (c) Elastic energy landscape for a thin shell when the bending
energy dominates (a{1), showing a smooth transition from convex to
concave as the natural curvature C0 changes. Ceq is the equilibrium
curvature that minimizes the energy. (d) When the stretching energy
dominates (a41), the energy landscape exhibits two local minima and
the equilibrium shape suddenly snaps from convex to concave.
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The total elastic energy of the shell is the sum of the bending energy (1.77)
and stretching energy (1.78): Eel¼ Ebendþ Estretch. It is convenient to make the
curvatures dimensionless using the characteristic curvature

ffiffiffiffiffiffi
k0

G

p
, such that:

~C¼C=
ffiffiffiffiffiffi
k0

G

p
, ~C0¼C0=

ffiffiffiffiffiffi
k0

G

p
. Using eqn (1.77)–(1.78), the dimensionless total

elastic energy of the shell ~Eel¼ Eel=ðEVðk0
GhÞ2Þ is then:

~EelB ~C � ~C0� �2 þ a ~C2 � 1
� �2

;

with

aB
L4k0

G

h2 ¼O
Estretching

Ebending

� �
: (1:80)

The parameter a quantifies the ratio of the stretching elastic energy to the
bending elastic energy and depends only on the geometry of the shell: the
thinner, wider or curved the shell, the greater the stretching energy com-
pared to the bending energy. We see below that a determines how the shell
flips from convex to concave when the natural curvature C0 is gradually
changed. To this end, we note that, for a given value of ~C0 and a, the equi-
librium shape of the shell ~Ceq is obtained by minimizing the total elastic
energy with respect to ~C:

@~Eel

@~C

 !
~C¼ ~Ceq

¼ 0: (1:81)

Figure 1.12c,d show qualitatively the shape of the total elastic energy as
function of ~C when the natural curvature of the shell ~C0 goes continuously
from convex (~C040) to concave (~C0o0). For a{1, the bending energy
dominates: the elastic energy exhibits only one minimum and the curvature
of the shell at equilibrium is always very close to the natural curvature
CeqEC0. Therefore, when the natural curvature changes from positive to
negative, the shell shape follows the natural curvature and smoothly changes
from convex to concave (Figure 1.12c). The situation is markedly different for
a\1 (Figure 1.12d). In this case, the stretching energy is large and the total
elastic energy (1.79) may exhibit two local minima separated by an energy
barrier, depending on the value of the natural curvature. As shown in
Fig. 1.12d, when the sign of the natural curvature changes, the system
initially remains stuck in the first local minimum of convex shape, until the
energy barrier disappears and the shell suddenly flips to the second min-
imum of energy, corresponding to the concave shape. Therefore, a small
change of natural curvature (the internal motor of the motion) may lead to a
very large change of actual curvature from convex to concave. This is the
amplification mechanism used by the Venus flytrap and other carnivorous
plants to speed up their motion and engulf their preys.53,162

The active process by which plants like the Venus flytrap trigger the in-
stability and overcome the energy barrier is still not fully elucidated, raising
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interesting questions about signaling and fast mechanical actuation at the
molecular level.50,66,154 However, the general principle of using an elastic
instability to overcome the hydraulic limit and amplify the speed of motion
is robust and weakly depends on these microscopic details.146 This strategy
has already inspired several artificial devices, such as fast soft actuators and
jumping robots.73,79,94,168 More generally, the non-muscular movements of
plants offer a wealth of mechanisms worth studying from a physics and
engineering perspective.19,22,140 Biomimetic applications of plant move-
ments are further discussed in Chapter 8.

Acknowledgements
I would like to thank the whole scientific community of Plant Biomech’ and
GDR PhyP (‘‘Plant Biophysics and biomechanics’’, CNRS no 2007), from
whom I learned most of the ideas and concepts discussed in this chapter.
I particularly thank Jacques Dumais and Bruno Moulia who introduced me
to the fascinating field of plant biomechanics almost 20 years ago. This work
was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant 647384).

References
1. D. Agostinelli, A. Lucantonio, G. Noselli and A. DeSimone, Nutations in

growing plant shoots: The role of elastic deformations due to gravity
loading, J. Mech. Phys. Solids, 2020, 136, 103702.

2. O. Ali and J. Traas, Force-driven polymerization and turgor-induced
wall expansion, Trends Plant Sci., 2016, 21(5), 398–409.

3. B. Andreotti, Y. Forterre and O. Pouliquen, Granular Media: Between
Fluid and Solid, Cambridge University Press, 2013.

4. S. Armon, E. Efrati, R. Kupferman and E. Sharon, Geometry and
mechanics in the opening of chiral seed pods, Science, 2011, 333(6050),
1726–1730.

5. B. Audoly and Y. Pomeau. Elasticity and Geometry: From Hair Curls to the
Non-linear Response of Shells, Oxford university press, 2010.

6. N. J. Balmforth, I. A. Frigaard and G. Ovarlez, Yielding to stress: recent
developments in viscoplastic fluid mechanics, Annu. Rev. Fluid Mech.,
2014, 46, 121–146.

7. A. Barbacci, M. Lahaye and V. Magnenet, Another brick in the cell wall:
biosynthesis dependent growth model, PLoS One, 2013, 8(9), e74400.

8. R. Bastien, T. Bohr, B. Moulia and S. Douady, Unifying model of shoot
gravitropism reveals proprioception as a central feature of posture
control in plants, Proc. Natl. Acad. Sci., 2013, 110(2), 755–760.

9. R. Bastien, S. Douady and B. Moulia, A unifying modeling of plant
shoot gravitropism with an explicit account of the effects of growth,
Front. Plant Sci., 2014, 5, 136.

Basic Soft Matter for Plants 55



10. R. Bastien, S. Douady and B. Moulia, A unified model of shoot tropism
in plants: photo-, gravi-and propio-ception, PLoS Comput. Biol., 2015,
11(2), e1004037.

11. L. Beauzamy, J. Derr and A. Boudaoud, Quantifying hydrostatic pres-
sure in plant cells by using indentation with an atomic force micro-
scope, Biophys. J., 2015, 108(10), 2448–2456.

12. T. Bertrand, J. Peixinho, S. Mukhopadhyay and C. W. MacMinn,
Dynamics of swelling and drying in a spherical gel, Phys. Rev. Appl.,
2016, 6(6), 064010.
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and cell size on the wall elasticity of plant cells, Plant Physiol., 1977,
59(2), 285–289.

152. H. Stoeckel and K. Takeda, Calcium-sensitivity of the plasmalemmal
delayed rectifier potassium current suggests that calcium influx in
pulvinar protoplasts from mimosa pudica l. can be revealed by hy-
perpolarization, J. Membr. Biol., 1995, 146(2), 201–209.

153. A. D. Stroock, V. V. Pagay, M. A. Zwieniecki and N. Michele Holbrook,
The physicochemical hydrodynamics of vascular plants, Annu. Rev.
Fluid Mech., 2014, 46, 615–642.

154. H. Suda, H. Mano, M. Toyota, K. Fukushima, T. Mimura, I. Tsutsui,
R. Hedrich, Y. Tamada and M. Hasebe, Calcium dynamics during trap
closure visualized in transgenic venus flytrap, Nat. Plants, 2020, 6(10),
1219–1224.

155. L. Taiz and E. Zeiger, Plant Physiology, Sinauer Associates, Inc.
Publishers, sunderland, ma, 2002, 3:484.

156. D. W. Thompson et al., On growth and form, On Growth and Form,
1942.

157. S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and Shells,
McGraw-hill, 1959.

158. M. Toyota and S. Gilroy, Gravitropism and mechanical signaling in
plants, Am. J. Bot., 2013, 100(1), 111–125.

159. D.-C. Trinh, J. Alonso-Serra, M. Asaoka, L. Colin, M. Cortes, A. Malivert,
S. Takatani, F. Zhao, J. Traas, C. Trehin and O. Hamant, How mech-
anical forces shape plant organs, Curr. Biol., 2021, 31(3), R143–R159.

160. M. T. Tyree and M. H. Zimmermann, Xylem Structure and the Ascent of
Sap, Springer, 2002.

161. D. Vella, A. Ajdari, A. Vaziri and A. Boudaoud, Indentation of
ellipsoidal and cylindrical elastic shells, Phys. Rev. Lett., 2012, 109(14),
144302.

162. O. Vincent, C. Weißkopf, S. Poppinga, T. Masselter, T. Speck, M. Joyeux,
C. Quilliet and P. Marmottant, Ultra-fast underwater suction traps,
Proc. R. Soc. B, 2011, 278(1720), 2909–2914.

64 Chapter 1



163. M. Warner, B. Thiel and A. Donald, The elasticity and failure of
fluid-filled cellular solids: theory and experiment, Proc. Natl. Acad. Sci.,
2000, 97(4), 1370–1375.

164. A. Weber, S. Braybrook, M. Huflejt, G. Mosca, A.-L. Routier-
Kierzkowska and R. S. Smith, Measuring the mechanical properties
of plant cells by combining micro-indentation with osmotic treat-
ments, J. Exp. Bot., 2015, 66(11), 3229–3241.

165. C. Wei, E. Steudle and M. T. Tyree, Water ascent in plants: do ongoing
controversies have a sound basis?, Trends Plant Sci., 1999, 4(9),
372–375.

166. T. Zhang, H. Tang, D. Vavylonis and D. J. Cosgrove, Disentangling
loosening from softening: insights into primary cell wall structure,
Plant J., 2019, 100(6), 1101–1117.

167. Y. Zhang, J. Yu, X. Wang, D. M. Durachko, S. Zhang and D. J. Cosgrove,
Molecular insights into the complex mechanics of plant epidermal cell
walls, Science, 2021, 372(6543), 706–711.

168. Q. Zhao, X. Yang, C. Ma, D. Chen, H. Bai, T. Li, W. Yang and T. Xie,
A bioinspired reversible snapping hydrogel assembly, Mater. Horiz.,
2016, 3(5), 422–428.

Basic Soft Matter for Plants 65



CHAPTER 2

Fluid–Structure Interactions
in Plant Vascular Flows

KAARE H. JENSEN

Department of Physics, Technical University of Denmark, DK-2800
Kgs. Lyngby, Denmark
Email: khjensen@fysik.dtu.dk

2.1 Introduction
Transport of matter from one part of the body to another in vascular plants
generally involves fluid flow along or across the walls of conduits formed
by cells. The most commonly studied tube systems are the xylem (water),
phloem (products of photosynthesis), and aerenchyma (gases). There are
many similarities between the fluid physics of plants and animals, the latter
of which has received a great deal of attention in the context of, for instance,
cardiovascular transport,2,15 cerebrospinal flows,44 and drinking.21 There
are, however, characteristics which appear unique to plants. First, vegetal
vascular flows occur predominantly inside individual either living (phloem)
or dead (xylem) cells. (An exception is arenchyma, where gases flow in the
intercellular space.) Another prominent feature of plant vascular tissues is
the presence of a rigid walls, which allow cells to withstand substantial
pressures, often in the B1 MPa-range. This exceeds the typical pressure in
animal tissues (10 kPa21,24) by one to two orders of magnitude. Remarkably,
the hydrostatic pressure in plant cells can take positive as well as negative
values. Positive pressures are generated by osmosis, while evaporation can
create tension. (The physical origin of both effects is discussed in greater
detail in Chapters 1 and 4.)
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Tolerating extreme mechanical stress is associated with substantial ex-
pense related to tissue construction and maintenance. If the channels are
too soft, they may burst or collapse, and will thus no longer be able to carry
flow. In contrast, building rigid pipes represents an unnecessary investment
with little or no functional benefit. Consequently, the channel’s mechanical
properties are constrained by trade-offs between functional advantage and
costs. The central physical question is therefore whether the conduits’ stress
tolerance has been subject to natural selection and if it represents an opti-
mal solution to the coupled flow-mechanics problem.

Motivated by these questions, this chapter explores the interplay between
fluid flow and elasticity in plants subjected to relatively strong environ-
mental perturbations. We begin by considering a simple example: the
bending of a branch where the macroscopic strain induces an excess pres-
sure in the fluid phase. This is followed by an analysis of the link between
conduit deformation and flow in the xylem when under tension. We then
progress to a discussion of cell-to-cell flows via intercellular pores that
contain soft elements. Finally, we briefly discuss osmosis and cytoplasmic
streaming. Although the reciprocal fluid–structure coupling is less clear in
the last two cases, their inclusion is merited by modeling approaches which
treat them as moving boundaries. In each case, perspectives and open
questions are discussed.

2.2 From Bending a Branch to Increasing
Cell Pressure

Our journey starts at the tissue scale and we begin by considering a process
familiar to all: the bending of a branch. The terminal branches of most
plants can be bent with little effort, and offshoots often do not break even
when subjected to relatively large loads due to, e.g., a climbing animal, wind,
rain, or snow.27,36 There are some exceptions to this, e.g., in the context of
nests.47 However, it is well established that the remarkable elasticity of plant
tissue follows from the material properties of cellulose, hemicellulose, lig-
nin, and pectin, and from the ordered cellular structure.10,50 It is therefore
interesting to consider how externally imposed macroscopic deformations
feed back on physiological conditions inside cells. This question is foun-
dational to the studies of plant biomechanics and slow growth (see, e.g.,
ref. 9 for a recent review). However, relatively few studies have addressed
how external perturbations impact cellular conditions on short timescales.

In what is arguably the simplest experiment, Louf et al.23 measured the
hydrostatic cellular pressure in tree and shrub branches subjected to can-
tilever loads (Figure 2.1A). The pressure Dp was measured in the xylem,
the main vasculature responsible for water transport. (Here, Dp represents
the excess pressure measured relative to the relaxed state.) The deflection
of the branch itself is an approximately linear function of the load (see, e.g.,
ref. 36). Classical linear beam theory predicts that the cell volume Vc in a
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symmetrical bent beam should remain constant, regardless of its elastic
properties. This would predict a null pressure variation DpB�BVc¼ 0 ac-
cording to Hooke’s law in a closed beam with interconnected channels.
(Here, B is the bulk modulus.) Surprisingly, Louf et al. found a non-linear
relationship (Figure 2.1B) between the between cell pressure DpBBe2

B and
bending strain eB¼ C̄R, where C̄ is the mean curvature, R the radius of the
branch, and BE0.1 GPa is the bulk modulus. This contradicts the simplest
theory cited above (Dp¼ 0). When an elastic beam is bent, however, the
longitudinal elastic strain (extension or compression) increases linearly with
the distance to the neutral surface (Figure 2.1A). This induces a bending
elastic energy per unit volume UbBEe2

BBEC̄2R2 that varies quadratically with
the radius of the beam. (E is Young’s modulus of the beam.) Therefore, a way
for the system to lower the bending elastic energy is to squeeze its cross-
section, hence decreasing the beam radius by a quantity d in the transverse
direction. This lowers the bending energy to UbBEC̄2(R� d)2 and is associ-
ated with a reduction in the channel volume DVc/VcB� d/R. However, the
transverse compression d/R comes at the cost of a positive compressive en-
ergy in the transverse direction UcBE(d/R). Minimizing the total energy

Figure 2.1 From bending a branch to increasing cell pressure. (A) When a branch of
radius R is bent it generates a maximal longitudinal strain eB¼ C̄R in the
beam, where C̄ is the mean curvature. The cross-section of the beam is
squeezed by an amount d to reduce the elastic bending energy. (B) This
leads to an increase in the xylem cell pressure DpBBe2, where B is the
bulk modulus. Note that panel (B) includes data from both real and
synthetic branches. Adapted from ref. 23, https://doi.org/10.1073/pnas.
1707675114, under the terms of the CC BY 4.0 license https://
creativecommons.org/licenses/by/4.0/.
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UbþUc with respect to the deformation d leads to a specific relation between
the transverse and longitudinal strain: d/RBe2

B. This implies that the pres-
sure in the cellular conduits scale as

Dp¼�B
DVc

Vc
B Be2

B; (2:1)

in accord with experimental data (Figure 2.1B). For moderately large deform-
ations (eB¼ 0.01) bending thus induces an excess pressure of DpE104 Pa.
Precisely how this overpressure may be involved in signalling, or indeed
sensed, is still under debate.8,13,23

2.3 Xylem Flow Under Tension and the Effects
of Conduit Collapse

Having considered the effects of macroscopic organ-scale deformations on
flow, we continue our discussion of elastic phenomena at tissue scales.
Xylem transport is driven by evaporation from the leaf surface. (This is
discussed in Chapter 4, and we shall not provide further details of the
mechanism here.) The suction process reduces the pressure in the vascular
conduits to values lower than measured in the surrounding tissue, and in
the atmosphere. A pressure drop across the xylem tube boundaries therefore
develops that tends to pull the cell wall inwards. The Hagen–Poiseuille law
(eqn (1.9)) tells us that a reduction in the conduit radius leads to a sub-
stantial reduction in flow capacity because the flow rate Q scales as the
radius a raised to the fourth power. Deformations of the xylem cell wall
could therefore be of physiological significance.

Complete conduit collapse is believed to be a rare event, because most
xylem conduits are appropriately reinforced and able to handle all but the
most extreme levels of water stress. We will return to this bracing problem in
the next section. Nevertheless, a few instances have been reported in which
vascular conduits have caved in.3,6,40,53 For instance, Bouche et al.3 reported
conduit collapse during dehydration in pine needles, mostly in the soft
tracheids surrounding the xylem (Figure 2.2). The tissue-scale deformation
in a seedling is illustrated in Figure 2.2A: the needle retains its shape at low-
to-moderate water stress but begins to collapse when the pressure in the
conduits is sufficiently negative. The physiological impact of dehydration on
transport is clear: the hydraulic conductance decreases rapidly as the ten-
sion increases from the relaxed state (Dp¼ 0.1 MPa) to the closed state
[DpE4 MPa (Figure 2.2C)]. The origin of this loss of conductivity is still
debated and could originate from biological responses within the living
tissue surrounding the vessels.40 However, it is instructive to examine the
simplest hypothesis of a purely mechanical effect due to the collapse of in-
dividual vascular conduits upon tissue contraction (Figure 2.2B).

Describing in detail the transition from an open to a closed conduit is a
complex mechanical problem, possibly involving buckling and contact
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mechanics, as well as interactions with the surrounding living tissue. The
process, however, does appear to be reversible.53 It is therefore conceivable
that the full coupled fluid-elasticity problem could be analyzed using, for
instance, a numerical finite-element scheme combined with a detailed tissue
model. To our knowledge this has not yet been attempted, but Cochard
et al.6 pointed out that channel occlusion has a strong geometric impact
on flow.

To get a first insight into how the closing process could impact the hy-
draulic resistance, and how it depends on the geometric and mechanical
parameters, we will briefly discuss a simple model of the process. It is not
meant to be a fully comprehensive description, but we hope it might spur the
interest of researchers in the field. When setting up the problem, we will
consider the flow rate Q through a tube of length L driven by the pressure
drop Dp (Figure 2.2B). The channels in question are reasonably small, ty-
pically measuring approximately aE10 mm in radius, and the fluid motion is
dominated by viscous forces, i.e., the Reynolds number Re{1. The cross-
sectional shape of the conduits is complex and difficult to describe in a

Figure 2.2 Xylem flow under tension and the effects of conduit collapse. (A-B) When
subjected to dry conditions, plant tissue deforms. The images show
transverse slices of pine needles based on X-ray computed tomography.
The tissue is compressed as the difference Dp between the internal and
ambient pressure increases from Dp¼ 0.1 MPa to 3.5 MPa. This trans-
lates to the cellular scale (see also ref. 53). Therefore, the xylem conduits,
which carry a water current Q driven by the same evaporative pressure
drop Dp, loose the capacity to carry flow. Here, we approximate the xylem
tubes by rectangular channels of with w, height h and length L.
(C) Experimental conductivity C plotted as function of the pressure
drop Dp (data taken from ref. 3). The data are normalized by the
stress-free conductivity, C0. The solid line represents the theoretical
prediction in eqn (2.4) with pc¼ 4 MPa. Panel A and data in C adapted
from ref. 3 with permission from John Wiley & Sons, Copyright r 2015
John Wiley & Sons Ltd.
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precise mathematical form. To simplify matters here we assume that the
channels are approximately rectangular of width w and height h, chosen
such that how (Figure 2.2). (Both h and w, however, are of the same order of
magnitude as the aforementioned conduits, i.e., hBwB10 mm.)

Because the flow is dominated by viscous forces and the geometry is
shallow, we can use Stokes’ equation, and the lubrication approximation
thereof to examine the link between flow and deformation. The flow rate Q
can therefore be expressed as

Q¼ h3w
12Z

Dp
L
; (2:2)

where Z is the viscosity and Dp is the pressure drop along the length L of the
channel. An important feature of eqn (2.2) is the strong geometric depend-
ence in the h3w-factor that links the pressure gradient Dp/L and the flow
rate Q. Fluid–solid interactions that modify the channel height h via the
pressure p thus have the potential to strongly impact the flow characteristics.

To model the channel deformation we consider the transverse pressure
drop dp¼ p� pe¼ p across the cell wall. Here, pe¼ 0 is the external tissue
pressure and po0 is the pressure in the conduit itself, which tends to pull
the walls inwards. When dp is (numerically) relatively small the channel is
unaffected and the height hEh0 is close to the relaxed state (Figure 2.2B).
However, as dp increases the channel closes and h-0. In in general, the
pressure p(x), and hence deformation h(x), will vary along the length of
the channel according to the lubrication equation, where @xpBh�3w�1ZQ. In
the limit of a completely blocked channel (h-0) the pressure gradient @xp
grows and the majority of the viscous dissipation will therefore be confined
to a relatively narrow region. To avoid dealing with the mathematical com-
plexities associated with this self-consistent problem, we will assume that
the typical transverse deformation is controlled by the pressure drop Dp, i.e.,
the maximum available pressure difference across the cell wall. The primary
deformation induced by this pressure imbalance across the cell wall will
occur along the z direction, i.e., perpendicular to the widest axis of the tube
(Figure 2.2B). The precise magnitude of the change in the channel height h
depends on the detailed boundary conditions, and on the neighbouring
tissue. Putting these details aside, and focusing only on the deflection of the
cell wall, we can estimate the local channel height from linear plate theory
hEh0� (w4/t3)Dp/E¼ h0(1�Dp/pc), where t is the thickness and E is the
Young’s modulus of the cell wall. The parameter pc¼ Et3h0/w4 is the closing
pressure, i.e., the approximate pressure at which the two widest opposing
cell wall segments will meet near the centre of the channel, thus blocking, or
at least severely restricting, flow. Finally, using this height profile in eqn (2.2)
yields the flow rate relation

Q¼ h3
0w

12ZL
Dp 1� Dp

pc

� �3

: (2:3)
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To assess the ability of the conduit to carry flow in a deformed channel, we
consider the hydraulic conductance C¼Q/Dp defined as the ratio of the flow
rate Q to the applied pressure Dp. When the applied pressure drop Dp{pc is
substantially smaller than the closing pressure pc the conductance C¼C0 is
equal to that of an undeformed rectangular channel C0¼ h3

0w/(12ZL). The
pressure-dependent conductance can be expressed as

C
C0
¼ 1� Dp

pc

� �3

(2:4)

which is gradually reduced as the applied pressure Dp approaches the
closing pressure pc, underscoring conduit collapse as a suitable mechanism
for controlling xylem flow. The simple model eqn (2.4) is in rough accord
with data (Figure 2.2C). Moreover, as already pointed out by Cochard et al.,6

it highlights the clear impetus for preventing deformation to maintain
unimpeded flow. This process is discussed further in the next section. For
comprehensive reviews of related flow control and fluid–structure inter-
action problems in animal cardiovascular flows, see, e.g., ref. 2 and 15.

2.4 Resistance to Collapse
Having outlined the potentially detrimental impact of channel collapse on
flow, we proceed with a brief analysis of the structural features employed by
plants to prevent, or at least control, cell wall deformations. The focus of this
analysis is again xylem cells under tension, and to set up this problem we
closely follow the anaysis by G. N. Karam.20 Tyree and Zimmermann46 also
provides an excellent and accessible introduction to the remarkable com-
plexity of the xylem.

For simplicity, we return to the picture of a xylem conduit as a slender
cylindrical tube of radius a and length Lca (Figure 2.3A). The trans-wall
pressure difference Dp causes hoop and longitudinal stresses, with the hoop
stresses being twice the longitudinal stresses. The forces per unit length in
the hoop and longitudinal directions, Fh and Fl, respectively, that the tube
has to resist can be written as:

Fh¼Dpa; (2:5)

Fl¼
Dpa

2
; (2:6)

where we note that a positive pressure Dp leads to tensile stresses in the cell
wall while a negative pressure leads to compressive stresses. (The latter case
is relevant to xylem flows.)

Plant cell walls are made from cellulose, hemicellulose, lignin, and pec-
tin.10,50 If the maximum allowable stress in the wall is s*, then the available
resisting hoop force per unit length will be Fmax¼ s*t, where t is the cell wall
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thickness. If a numerically small (but negative) internal pressure p is applied
and Dpaos*t the tube can readily resist the hoop and longitudinal stresses
caused by the internal pressure. However, if the internal pressure is suf-
ficiently great, specifically when Dpaos*t, the tube wall needs reinforcing in
the longitudinal as well as the hoop direction to resist internal pressures.

In the xylem, the reinforcement is often in the form of a helical-coil
thickening of secondary wall material with cross-section area A and spacing s
at an angle a (Figure 2.3B). Equating the resisting forces to the applied ones
in the hoop and longitudinal directions, respectively, leads to

s*ðtþ A=s cos2 aÞ¼Dpa; (2:7)

s*ðtþ A=s sin2 aÞ¼ Dpa
2
: (2:8)

For a given amount of cell wall and reinforcement material, the angle must
therefore fulfil

cos2 a� 2 sin2 a¼ st
A
; (2:9)

in reasonable agreement with data where angles in the range aE10–201 are
most frequently observed (Figure 2.3C). It has been speculated that soft

Figure 2.3 Resistance to collapse. (A) Xylem conduits are approximately cylindrical
and often function under tension (magnitude Dp). This result in hoop,
Fh, and longitudinal, Fl, forces as the cell wall is pulled inwards.
(B) Helical thickenings of cross-section area A, spacing s and pitch
angle a are frequently observed. They act to strengthen the pressure
vessel. (C) Pitch angle a plotted as function of non-dimensional spacing
st/A. The solid line represents the optimal configuration in eqn (2.9).
(D) Micrograph of thickening patterns in xylem of the grass species
Elytrigia repens. Panel (C) and (D) adapted from ref. 20.
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xylem-inspired conduits based on this principle could provide a robust
alternative to rigid pipes.1 Notably, the designs used by plants are reasonably
far from the situation in which the primary wall is neglected, i.e., when t{A/s.
In this case eqn (2.7) and eqn (2.8) yield aE351, which is the optimal winding
angle often used in fibre-reinforced pressure vessels.

2.5 Fluids and Elasticity in Intercellular Flows
Having explored the physics of flow at organ and tissue scales, we now focus
our attention on intercelluar transport processes. A unique feature of plants is
their relatively rigid compartmentalization in which cells remain fixed in space
throughout their existence. The organism as a whole can, of course, morph,
grow, move, and so on, but the relative position of a mature cell and its im-
mediate surroundings remains approximately constant throughout its life.43

A consequence of the inherent architectural rigidity is that many plants
cells establish permanent channels that link them to their neighbours
(Figure 2.4A). There are many different types of cell–cell pores, e.g.,
plasmodesmata (PD),37 sieve pores,25 and pit pores4 (some of which contain
PD sub-channels17), and we will not discuss all of them in detail here. The
strong integration, however, implies that the cellular cytoplasmic liquid is
more or less continuous across all cells.22 This stands in stark contrast to
animal cells, where individual cytoplasmic connections mediated by, for
instance, gap junctions, most often are limited in time and space.41 It is,
however, important to stress that the cytoplasmic continuity does not imply
that transport is unregulated.22 Finally, we note that transport across the cell
membrane plays a major role in cell–cell communication,43 but we will not
discuss that in detail here.

Direct cell–cell trafficking of small molecules in plants is mediated by PD
nanopores.37 These cylindrical nanopores (typically several hundred nano-
metres long and tens of nanometres wide) cross the wall between plant cells.
The pores are open, i.e., the plasma membranes of adjacent cells meet inside
the pore. The endoplasmic reticulum (ER) permeates each pore, and the gap
between the cylindrical desmotubule and the membrane forms an annular
cytoplasmic sleeve through which water and solutes move. The ER–
desmotubule complex is anchored by filamentous protein tethers.7 Interest-
ingly, transport across PD is sensitive to the difference in pressure between
two neighbouring cells. For instance, a difference in cell turgor of 200 kPa
instantly reduces PD transport by 50% between adjoining trichome cells of
Nicotiana clevelandii,28 and turgor differences that arise during cell growth
have also been associated with reduced permeability.38,49,51,52 The rapid re-
duction in transport cannot be explained by standard models of PD transport,
which assume that cell–cell movement occurs by a combination of molecular
diffusion and bulk flow in static PD geometries. The physical mechanism of
pressure regulation of the permeability is a topic of active research.16,30

The precise size of the PD aperture is still under debate, but it is be-
lieved to be of order O(1 nm).26,32 This is sufficiently large to select and
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mediate diffusive transport of individual molecules (e.g., ions, sugars,
hormones), but not effective at facilitating bulk fluid flow. Indeed, it
would appear that bigger holes are needed. This is the case, for instance,
in the vasculatures formed by phloem and xylem cells. (Here, we remind
ourselves that water flows from roots to leaves in the xylem, while the
products of photosynthesis move in the phloem). In these tissues, the
constituent cells are linked by large open pores which permit liquids to
move more or less freely. Another notable feature of plant vascular cells is

Figure 2.4 (A) Most plant cells are connected to their neighbours by small pores or
channels which facilitate intercellular transport. (B) One example is
plasmodesmata, nanopores that directly link the cytoplasm of adjacent
cells (1 and 2). Transport across the cell wall occurs in a concentric
cytoplasmic sleeve formed in the narrow gap between the cell membrane
and the desmotubule (an organelle which links the ER of adjacent cells).
(C) Another case is pit pores, which connect neighbouring xylem vascular
conduits and limit the ability of air pockets to spread. The cell–cell flow
rate Q of water is driven by the pressure difference Dp across the pore.
A unique feature of pit pores in conifers (and related plant families) is
the presence of soft cellulose filaments (the margo), which deform when
subjected to mechanical stress. This enables the central solid region (the
torus) to gradually block flow across the pore as the pressure drop
increases. (D) The actuation is small when a negligible pressure drop Dp
is applied. However, as Dp increases, the gap height h diminishes, thus
increasing the resistance to flow. See additional details in the text.
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that they are slender. The diameter-to-length aspect ratio is often of order
O(0.1) or less.

We will not discuss all the different vascular pore types here, but choose to
focus on torus margo pit pores, as these provide an illustrative example of
fluid–structure interactions in plant vascular flows (Figure 2.4B). Pit pores are
small intercellular microchannels that link adjacent xylem conduits. (For de-
tailed reviews of their structure, function, and evolution, see ref. 14, 39 and 46.)
A unique feature of pit pores in conifers (and related plant families) is the
presence of soft cellulose filaments (the margo) which deform when subjected
to mechanical stress. This enables the central solid region (the torus) to
gradually block flow across the pore as the pressure drop increases. The key
function of pit pores is to prevent gas pockets from migrating between cells.5,29

At the interface between two liquid-filled neighbours, however, the pressure
difference could, in principle, be sufficiently great for the soft valve to actuate in
repose to strong localized transpiration stream fluctuations or tissue damage.

To understand how fluid–solid interactions impact the intercellular flow
characteristics, we proceed to consider the system sketched in Figure 2.4C: a
flat disk of radius RE5 mm suspended above a small circular opening of
radius aE1 mm. Liquid flows in the shallow gap of height ho1 mm between
the torus and the cell wall. A pressure drop Dp drives the flow rate Q across
the pores. The typical flow speed is moderate (Q/R2E1 mm s�1), hence the
Reynolds number Re¼ rvhZE10�1 is reasonably small. It is therefore rea-
sonable to assume that the system is not too far removed from ideal Stokes’
flow conditions. Moreover, because the geometry is reasonably shallow we
can deploy the lubrication approximation thereof to obtain a first approxi-
mate to the link between pressure drop and flow rate. With these assump-
tions, the pressure drop Dp across the pore can be expressed as

Dp¼�
ðR

a
@pdr¼ 6ZQ

p

ðR

a

1
rh3 dr: (2:10)

The flow rate Q is thus a linear function of the pressure drop

Q¼ p
6Z

h3

lnðR=aÞDp; (2:11)

although the margo deformation will reduce the channel height h as pres-
sure increases. To estimate this effect, we think of the torus–margo complex
as a thin membrane of thickness t, radius R, and Young’s modulus E. Using
linear thin-plate theory (see e.g., ref. 45), we can to a first approximation
express the gap height as h(Dp)¼ h0 (1�Dp/pc), where pc¼ Eh0t3/R4 is the
pressure required to close the valve. Using this expression in eqn (2.11) leads
to a non-linear pressure-flow relationship:

Q¼ p
6Z

h3
0

lnðR=aÞDp 1� Dp
pc

� �3

: (2:12)
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The pressure-dependent conductance can thus be expressed as

C
C0
¼ 1� Dp

pc

� �3

; (2:13)

which, notably, is identical to eqn (2.4), which describes the hydraulic con-
ductance of a collapsing channel (plotted in Figure 2.2C). Again, we note the
strong geometric impact on on flow. The conductance is reduced by almost 50%
when Dp¼ 0.2pc and by nearly 90% when the pressure drop Dp¼ 0.5pc reaches
half the closing pressure pc. The predicted flow control profile in eqn (2.13) was
first obtained by Park et al.31 and is still awaiting experimental validation.

2.6 Intracellular Flows and Cytoplasmic Streaming
We end this chapter by discussing fluid–solid interactions at sub-cellular
scales. The interior of a plant cell is a complex physical environment dom-
inated by the presence of numerous organelles suspended in the membrane-
enclosed cytoplasmic fluid. This cytosol also contains a myriad of smaller
particles, from large proteins to biomolecules and ions.

Intracellular flows are important for many phenomena in plant cells. In-
deed, when seen under a microscope, bulk fluid motion is commonly ob-
served in many cell types. These intracellular flows are (primarily) driven by
two effects: osmosis and cytoplasmic streaming. Osmosis is the transport of
water across the semipermeable cell membrane in response to solute con-
centration differences between the cell and its surroundings. (For a detailed
discussion, see Chapter 1 and ref. 18 and 42.) One interesting question is
how the cell radius a and typical flow speed V are related. In an osmotic
process, the transmembrane flux j of the fluid entering (or exiting) the cell is
proportional to potential difference across the membrane

j¼ Lp(RTDc�Dp) (2.14)

where Lp is the permeability, R is the gas constant, T is temperature, and c is
the concentration. The first term in the bracket corresponds to the van’t Hoff
approximation of the osmotic pressure, while the second term is the
hydrostatic pressure difference across the membrane. Volume accumulation
will continue until a balance between pressure buildup and concentration
difference has been reached and j¼ 0. In phloem cells, which form a long file
of axially connected tubes, of, say, length L, the typical flow speed V meas-
ured along the cell axis is

V ¼ 2paLj
pa2 ¼

2Lj
a
; (2:15)

which, interestingly scales inversely with cell size. This means that the flow
is comparatively faster in a smaller cell. If speed is important, as is the case,
for instance, in signal transduction, one would expect that the tubes would

Fluid–Structure Interactions in Plant Vascular Flows 77



be relatively small. Consistent with this concept, phloem cells, which carry
both photoassimilates and signals, are among the smallest plant vascular
conduits with radius aE10 mm.19

While osmotic flows are suitable for driving transport in relatively small
cells, it is unlikely to be a particularly useful strategy for mixing or transport
in larger cells. Instead, many cells use cytoplasmic streaming to facilitate
intracellular circulation (Figure 2.5A). This process drives fluid flow using
molecular motors called myosin.12,33 These proteins burn energy (ATP) while
sliding along actin filaments (Figure 2.5B). The myosin is in turn attached to
organelles (e.g., vesicles), which are dragged along the actin cables, thus
entraining the cellular fluids which move in the same direction. One can
think of cytoplasmic streaming as a special case of the no-slip boundary

Figure 2.5 Cytoplasmic flows. (A) Cylindrical geometry analogue to Chara cells.
(B) Microscopic arrangement of actin cables, myosin, and vesicles involved
in dragging the cytoplasm. Adapted from ref. 54 with permission from
Rockefeller University Press, Copyright 1976. (C) Simplified counter-moving
parallel plate geometry to estimate the energetic cost of driving. (D) Typical
cytoplasmic speed as function of the cell radius. Data taken from ref. 35. See
also ref. 55–69.
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condition, in which the channel wall, and hence fluid, is moving in the
laboratory frame.

Cytoplasmic streaming is readily observable in many plant cells (you may
have seen it in onion epidermis cells), and is especially striking in the large
cells of the Chara algae. Algae and land plants are both eukaryotes, perform
photosynthesis, and share many other features. Note, however, that algae
lack true roots, stems, and leaves.

Streaming flow in Chara can reach speeds of up to V¼ 100 mm s�1 in the
largest cells, which are up to 2a¼ 1 mm in diameter. Interestingly, the ty-
pical flow speed V first increases with cell radius a before stabilizing at the
plateau value VE100 mm s�1 (Figure 2.5D). In contrast, osmotic flows were
found to decrease with increasing cell size (eqn (2.15)). The key question is,
What physical effects drive this difference?

To our knowledge, W. F. Pickard was the first to notice the accelerating
flow in relatively small cells, and we follow his analysis here.35 To get a better
understanding of the problem, we begin by providing a more detailed ac-
count of the microscopic conditions. The actin filaments in Chara are lo-
cated at the periphery (r¼ a) of the cylindrical cells, which can reach lengths
of L¼ 10 cm and radii of a¼ 0.5 mm (Figure 2.5A). One half of the cell
periphery (angles 0oyop) is covered by actin cables whose polarity
determines that myosin proteins move at the speed u(a, y)¼ V along the þz
direction. The other half (angles poyo2p) moves at the same speed but in
the opposite direction. The regions where the actin polarity changes sign (at
y¼ 0 and y¼ p) are known as indifferent zones. This arrangement of actin
filaments induces a bi-directional pipe flow with a zero net current.48 To
characterize the flow conditions in this relatively complex geometry, we
notice that the Reynolds number Re¼ rVa/ZE0.1 is reasonably small, which
allows us to ignore inertial effects and use Stokes’ equation in the analysis.
This leads to the velocity profile

uðr; yÞ¼ 2
p

V arctan
2ðr=aÞ sin y

1� ðr=aÞ2

 !
; (2:16)

which, to our knowledge, was first discussed by Pickard,34 and later refined
by R. E. Goldstein and co-workers to include the effect of non-zero in-
different zone angles.11 When averaged over the top half of the cell, the
mean flow speed is hui¼ 8V/p2. The Pickard flow profile in eqn (2.16) has
stood up to detailed experimental scrutiny.11,34

Returning to the link between cell size and flow speed, we note that be-
cause the observed speed V enters into the flow problem as a boundary
condition, eqn (2.16) does not permit us to justify the observed relation
between cell radius a and V itself. In a subsequent paper, however, Pickard
proposed a solution to this problem:35 the relation is determined by a bal-
ance between viscous energy dissipation and metabolic cost. To avoid un-
necessary computational complexities, we divert from exact geometry and
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consider for a moment the flow between two counter-moving parallel plates
(Figure 2.5C). This case is known as Couette flow. In this configuration, the
velocity varies linearly between the two edges

u¼ V
z
a

(2:17)

where V is again the speed of the moving boundary and the z direction is
perpendicular to the axis of motion (�aozoa). This flow profile is rea-
sonably consistent with eqn (2.16) near the cell mid-plane y¼ p/2, but de-
viates near the indifferent zones. The shear force which must be applied to,
say, the top surface at z¼ a, is

F ¼ ZVA
a
; (2:18)

where A is half the cell surface area. The energetic cost of driving the flow
can be computed by considering the work performed when displacing a
section of the wall. The viscous power dissipation is the product of the shear
force and the boundary speed, i.e., Pvisc¼ FV. The energy input required to
drive the flow is delivered by the the actin cables, which consume ATP. As-
suming that the cable density and the power output per cable is independent
of cell size, the power delivered PATP is simply proportional to the cell surface
area A, i.e., PATP¼ kA. Equating the viscous power dissipation Pvisc and the
input power PATP leads to an equation that relates the cell radius a and the
streaming velocity V:

V B
ka
Z

� �1=2

: (2:19)

Based on this energy model, eqn (2.19) predicts that the speed V grows with
the square root of the cell radius a. The predictions of eqn (2.19) are in
rough accord with data (Figure 2.5D). Notably, however, the flow speed
peaks at or near the cell radius of aE200 mm. To our knowledge, the reason
for this optimum is unknown. Note that the exact calculation in cylindrical
coordinates yields the same scaling, so it is unlikely to be a purely geometric
effect.35
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CHAPTER 3

Theoretical Tools and Concepts
for Modelling Growing Plant
Tissues

OLIVER E. JENSEN

Department of Mathematics, University of Manchester, UK
Email: Oliver.Jensen@manchester.ac.uk

Theory provides an important complement to experiment in understand-
ing the role of mechanical forces in plant growth and development, and
the associated concepts underpin our interpretation of observations. In an
area where biology, engineering, physics, chemistry and mathematics
converge, the individual researcher is likely to be challenged to step out-
side their area of primary expertise. To help open a few doors between
disciplines, this chapter aims to show readers who may have some famil-
iarity with basic mechanics how traditional approaches can be adapted to
develop new theoretical models describing growing multicellular plant
tissues. More mathematical material appears within a handful of Technical
Comments that can be ignored by readers uncomfortable with unfamiliar
notation. There is not space here to be fully comprehensive, and the topics
presented are deliberately selective, influenced by the author’s experience
working on root growth.1 A wider view of mechanical modelling of growing
tissues is provided by Goriely;2 a number of plant-specific reviews are also
available.3–6
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3.1 An Introduction to the Mechanics of
Multicellular Materials

Deformations of plant tissues may be passive (a stem bending in the wind or a
leaf hanging under gravity) or active (involving growth, through cell division
and cell elongation). Setting aside cell division for the time being, a crucial
feature of growing plant tissues is that cells generally remain tightly adhered
to their neighbours (in so-called symplastic growth). In the absence of dra-
matic deformations that lead to fracture, strains must then be reasonably
smooth functions of position, varying slowly from cell to cell in a tissue. This
does not preclude the plant from undergoing large deformations, as small
strain gradients can accumulate along slender structures to allow substantial
deformations. This is of critical importance in allowing a plant to accom-
modate and exploit its environment. For example, differential expansion
drives the bending of a gravitropic root7 or the unfurling of an anther.8

Likewise a long slender leaf can be strongly deformed in a breeze9 without the
strains on its tissues being large enough to cause irreversible deformations.

While deformations may generally be smoothly varying functions of pos-
ition, the resulting stress fields may not be.10 This is because plant cells are
heterogeneous structures, with soft pressurised interiors and relatively stiff
cell walls. In general, stress in a biological material can be very sensitive to the
size and location of the domain over which it is measured, as explained in the
Technical Comment. This raises interesting questions about the heterogeneous
distribution of stress within a cell, and how stress (or strain) is sensed within
a cell. Cosgrove11 discusses some of the challenges of measuring material
properties of plant tissues at small scales.

Technical Comment. The notion of stress heterogeneity can be expressed
more precisely as follows. The (Cauchy) stress r of a material can be in-
terpreted with respect to a sample area A with unit normal n̂, such that
the force exerted on A is

Ð
Ar�n̂dA. That is to say, on each small element dA

of the surface A, the tensor r maps the vector n̂ to a new vector (a stress)
r�n̂, leading to a force r�n̂dA. The total force on A is an integral (a sum)
over all such elements. If n̂ is uniform over A, we may therefore define the
average stress over the sample area as hri � ð1=AÞ

Ð
r dA. For a material

with microstructure, we expect the average stress to be well defined (i.e. to
have a robust statistical average) for sufficiently large A. However hri is
likely to be highly variable for small A, depending on which component of
the microstructure is being sampled.

A cartoon visualising stress across a primary root or stem is shown in
Figure 3.1. Each cell contains a vacuole that draws in water from its en-
vironment, generating a high osmotic pressure (of approximate magnitude
RTC, where RE8.3 J K�1 mol�1 is the ideal gas constant, T the absolute
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temperature and C the solute concentration in the vacuole). The tendency of
the cell to inflate is restricted by the stiff cell wall, generating a tension in the
cell wall. The balance between expansive forces in the cytoplasm, and tensile
forces in the cell periphery, give the cell an intrinsic rigidity (like an inflated
balloon). Strong adhesion forces between neighbouring cells reinforce this
effect, rigidifying the tissue. (Secondary mechanisms of stiffening through
deposit of woody material are not considered here.) Across the cross-section
of a stem, therefore, we expect to see alternating regions of tensile and
compressive tissue (Figure 3.1). When measured with respect to sufficiently
small areas A, the stress field fluctuates dramatically across individual cells.
However, once integrated over multiple cells, we can consider a field that
varies more smoothly. Figure 3.1 illustrates a postulated stress field whereby
cells at the periphery of the stem are under net tension, while those nearer
the centre are under net compression (mimicking the stress field within
individual cells), even though the stress averaged across the whole stem
cross-section may vanish. This particular distribution of so-called residual
stress helps give the stem rigidity.12 (Similarly, the shoot apical meristem has
a stiff epidermal layer, which can be modelled as a pressurised shell.13,14)
Stress is hard to measure non-invasively but the effects of residual stress
are revealed when the stem is cut, allowing central cells to elongate and
peripheral cells to shrink, causing the cross-section to bulge.

The stress field in Figure 3.1 illustrates the mathematical idea of
homogenisation, whereby a fluctuating field is approximated by its spatial

Figure 3.1 A sketch of the axial component of stress (top) in a layer of cells (below)
lying across the cross-section of a root or stem, indicating the inhomo-
geneous nature of residual stress (adapted from10). Stress is sampled
along the purple line that intersects cell walls (under tension) and
cytoplasm (under compression). The stress field therefore fluctuates
from positive (dark green) to negative (pale green) values with respect
to a reference level. Averaging the stress across each cell (red line)
indicates how cells in the centre of the stem may be under net com-
pression, while those near the periphery may be under net tension. The
black curve shows the smoothly varying stress field when it is averaged
over multiple cells. When averaged over the whole stem, the stress field
may vanish (dotted line), even though individual components of the
tissue may be subject to large tensile or compressive stresses.
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average, which may vary smoothly over long lengthscales. For plant tissues,
we might then wish to treat the tissue as a continuum (smoothing out the
variations over individual cells) and seek a mechanical model formulated in
terms of partial differential equations (PDEs) relating the slowly varying
stress field to strain or strain rate, to model deformation under loading or
growth. A constitutive assumption is required, capturing the mechanical
properties of the tissue (as linearly or nonlinearly elastic, viscoelastic, etc.)
and possibly including a framework for modelling growth (e.g. the popular
Skalak–Rodriguez formulation15,16). We review a set of such models below,
starting from simple spatially one-dimensional (1D) descriptions (which are
very useful for slender structures) before moving to 3D.

A key question in this approach is to define the appropriate constitutive
model. One then asks: how are the macroscopic parameters describing a
tissue related to the geometric and physical properties of its microstructure?
This question motivates models that resolve individual cells, or components
within them. In principle, a cell-scale model can be carefully averaged to
derive bulk tissue properties. When cells have a highly organised arrange-
ment (for example a periodic lattice), then the averaging can be performed
systematically (via asymptotic or two-scale homogenisation17). More gener-
ally, however, there will be a degree of spatial disorder in the tissue, which
raises interesting questions about the validity of averaging procedures.
The inherently discrete nature of a multicellular tissue may even present
mechanical features (such as force chains18) that are lost via spatial
averaging.

Even in upscaling from cells to tissues, a constitutive assumption is nee-
ded to describe cell properties, which in turn raises questions about cell
microstructure. For plant cells, attention turns immediately to the cell wall, a
composite material in which stiff cross-linked cellulose fibres are embedded
in a pectin matrix. Plant cells regulate the material properties of the wall,
and in particular the orientation of the fibres within it, to influence cell,
tissue and organ properties. Key concepts here are anisotropy (material
properties that vary with orientation with respect to the fibre distribution)
and plasticity (irreversible deformations that arise for materials that are
subject to sufficiently large stress or strain). Plants present a fascinating
challenge in that the molecular microstructure (fibre orientation in cell
walls, at the sub-micron scale) can influence organ shape (up to metre
scales). Alongside the ‘bottom-up’ question of how microstructure influ-
ences macroscopic properties, we must also consider the ‘top-down’ ques-
tion of how the plant senses its environment (via signals associated with
gravity, light, water, nutrients, etc.) and responds at the molecular level.
Hierarchies of mathematical and computational models are needed that can
efficiently communicate information up and down scales, exemplifying the
challenge of multiscale modelling.

This endeavour is complemented by the increasing availability of 3D im-
aging of plant tissues, allowing detailed geometric data to be integrated with
models of mechanical and biological function. To some extent this is
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beguiling: while shape (and the distribution of specific molecules) can be
studied in exquisite detail, measurement of mechanical properties and
particularly of stress (as mentioned above) remains much more challenging.
Theoretical and computational models are essential in inferring mechanical
properties from imaging data and stress assays.

3.2 Simple Constitutive Models and Lockhart’s
Equation

In nonlinear elasticity, different representations of stress can be used,
defined with respect to the deformed or undeformed configurations of a
material. For small deformations, however, these distinctions can be ignored,
and for slender structures it is often sufficient to focus on a single dominant
(axial, scalar) stress component s (taken from a tensor r), with dimensions
force/area. When integrated over the thickness of structure, the resulting force
is sometimes called a stress resultant (with dimensions force/length).

Likewise, large deformations of materials in 3D need careful definition of
strain. For small (axial) deformations of slender structures, however, it is
sufficient to represent the strain as the relative elongation e¼ dl/l for an ob-
ject of length l deforming by extension dl. When length l(t) varies with re-
spect to time t, the strain rate ė¼ (1/l)dl/dt, is termed the relative elongation
rate (RER) or relative elementary growth rate (REGR) in the plant science
community and is a central quantity in modelling growth by elongation.

We now revisit some standard constitutive descriptions of materials,
moving toward the elasto-viscoplastic model that is commonly used to model
growing plant tissues. Cosgrove19 makes the important point about accuracy
in terminology: wall ‘softness’, for example, is vague, as it does not distinguish
compliance (an elastic property) from extensibility (a viscous property).

3.2.1 Simple Constitutive Laws in One Dimension

For an elastic material, deformation is fully reversible: a load induces a strain
and removal of the load causes the material to recover its initial state. At a
molecular level, it is assumed there is no breakage of molecular bonds. In
1D, we write s¼ Ee for some stiffness E (associated with the Young’s
modulus). This linear relation is a statement of Robert Hooke’s famous ‘law’.
There is an associated mechanical strain energy W ¼ 1

2 Ee2, so that s¼dW/de
and E¼d2W/de2.

For a viscous material, deformation is irreversible (implying breakage of
molecular bonds), and the material does not return to its original con-
figuration after a load is removed. In 1D, we write s¼ Zė for some viscosity Z,
where a dot denotes a time derivative. This can be inverted to read ė¼fs
where f¼ Z�1 is called an extensibility in the plant science community. The
quantity sė¼ Zė2 is the rate at which mechanical energy is dissipated by
bond breakage.
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For viscoelastic materials, two basic formulations are normally adopted,
with viscous and elastic elements assumed to act in series (the so-called
Maxwell model) or in parallel (Kelvin), representing predominantly fluid-like
or solid-like materials, respectively. When in parallel (so that the stresses of
each element contribute to the total stress), we write s¼ Eeþ Zė. When in
series (so that the strains of each element contribute to the total strain),
we write

_e¼fsþ E�1 _s: (3:1)

These expressions reveal a relaxation time Z/E� E�1/f over which the
material responds to a change in loading conditions. For example, the
Maxwell model (eqn (3.1)) describes how, under a step-change in deform-
ation, there is a rapid elastic response, followed by relaxation of the stress to
zero. Alternatively, the Kelvin model describes creep, the time-dependent
deformation arising in response to a step-change in stress. More elaborate
combinations of elements can be used to model more complex responses.

To describe a plastic material we must introduce the concept of a yield
stress Y (or possibly a yield strain), below which the material remains (largely)
undeformed but above which there is irreversible deformation. The viscous
model is adapted to read

ė¼f[s� Y]1 (3.2)

where theþ subscript denotes (for a scalar argument) a Heaviside function:
[x]1¼ x if x40 and [x]1¼ 0 otherwise. This innocuous constitutive law in
eqn (3.2) (sometimes called a Bingham model) is piecewise linear, but the
discontinuity makes eqn (3.2) strongly nonlinear overall (not even every-
where differentiable). Yield is a complex topic, reviewed elsewhere.20

We can combine eqn (3.1) and (3.2) to form a (Maxwell) elasto-viscoplastic
material, satisfying

_e¼f s� Y½ �þþ E�1 _s: (3:3)

Weak loads, for which s remains below Y, lead to reversible elastic de-
formation with s¼ Ee. Stronger loads irreversibly deform the material. This
model can be used to explain the way in which a ribbon (or a strip of paper,
i.e. cellulose) can be curled by running it over a blade, provided it is under
sufficient load.21

It is important to remember that all of these constitutive models are based
on very restrictive assumptions. A real material is likely to have complex
behaviour that falls outside these standard descriptions. Obvious missing
features are dimensionality (considering 2D or 3D rather than 1D deform-
ations, implicating additional components of stress and strain), non-
linearity, anisotropy, heterogeneity and, for plants, active processes that lead
to growth.
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3.2.2 Lockhart’s Model

Lockhart22 introduced an influential model for the expansion of a single
plant cell. Suppose that an isolated thin-walled cylindrical cell elongates
along its axis. Its volume is V¼ Al, where A is its cross-section. As long as A is
constant, then the volumetric strain rate is equivalent to the linear
strain rate,

1
V

dV
dt
¼ 1

l
dl
dt
¼ _e: (3:4)

If P is the pressure within the cell, then a force balance on the end plate
(assuming the cell is under no external load) gives

PA¼Tp (3.5)

where T is the axial stress resultant (axial tension) in the cell wall and p the
length of the perimeter. (For a circular cross-section, A¼ pR2 and p¼ 2pR
where R is the cell radius, so that T¼ PR/2. Away from the ends of the cell,
there is an additional transverse (or hoop) stress resultant in the curved cell
wall, given by the Young–Laplace condition as PR, exactly double the axial
stress resultant.) If we adopt a 1D viscoplastic model for the cell wall (eqn
(3.2)), then

1
l

dl
dt
¼f s� Y½ �þ (3:6)

where s¼T/h and Y is a yield stress. (Here s represents the axial stress in the
wall, averaged over the wall thickness h.) Then eqn (3.4) and (3.5) give

1
V

dV
dt
¼ yf P� Y

y

	 

þ

where y � A
ph
: (3:7)

The geometric structure of the cell, captured through the dimensionless
ratio y, converts the wall extensibility f and wall yield stress Y to an effective
cell extensibility yf and cell yield stress Y/y. We will shortly see how the
viscoplastic structure of the model is preserved as we move up to tissue level.

A plant cell regulates its turgor pressure using solutes that draw in water
from its surroundings by osmosis. The flux per unit area across the plasma
membrane (adjacent to the cell wall) is given by a Starling relation, of the
form J¼ k(DP�DP), where DP is a hydrostatic pressure difference and DP
an osmotic pressure difference. k is a membrane permeability. For simplicity,
let us assume that the hydrostatic and osmotic pressures are zero outside the
cell, and that the flux takes place across the curved wall of the cell, of area pl.
Then mass conservations demands that

dV
dt
¼ plkðP� PÞ: (3:8)
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If we assume that P is large enough to allow cell expansion, we can eliminate
P between (3.7) and (3.8) to obtain

1
V

dV
dt
¼ fy P� Y=y½ �

1þ ðfy2h=kÞ
(3:9)

if P� Y/y is sufficiently large to induce yielding. The parameter fy2h/k
represents a ratio of the time taken for water to cross the cell wall to the time
taken for the cell to elongate. If water transport is rapid, which is a con-
ventional assumption, then fy2h/k{1, PEP and

1
l

dl
dt
¼fy P� Y=y½ �þ: (3:10)

This demonstrates how the cell acts as an osmotic pump. Provided solutes
can be concentrated sufficiently (increasing the osmotic pressure P), then
water is drawn quickly into the cell, increasing its volume. Lockhart’s model
treats growth as a viscoplastic process, with molecular bonds being broken
irreversibly in the cell wall to allow its elongation. The assumption that the
wall thickness h remains constant as the cell elongates implicitly accounts
for active metabolic processes that deliver new material to the cell wall
(which would be expected to thin as it stretches), allowing the wall to
maintain its thickness as it expands. More complex treatments examine the
coupling between water fluxes and growth.23

Finally, in some circumstances it is helpful to incorporate the elastic re-
sponse of the cell as well, in which case eqn (3.3) leads to

1
l

dl
dt
¼fy P� Y=y½ �þþ yE�1 dP

dt
: (3:11)

Technical Comment. An alternative formulation that turns out to be
useful24 in higher dimensions is as follows. Write e¼ eeþ eg, de-
composing the strain in adjacent Maxwell elements into that due to the
elastic component ee¼ s/E, and that arising from plastic deformation
(used to mimic growth). Let eY¼ Y/E be the yield strain associated with
the yield stress Y. Then eqn (3.3) can be re-expressed as

ee¼ E�1s, ėg¼fE[ee–eY]1, e¼ eeþ eg, (3.12)

so that a load s induces an (internal) elastic strain which, if large enough,
increases the unloaded length of the material. For eqn (3.11), we see that
ee¼Py/E. If one introduces l̄ as the length that the cell would take due to
growth alone, a variation of eqn (3.12) has

ee¼Py=E; _�l=�l¼fE ee � eY½ �þ; l¼ ee
�l: (3:13)

We will see later how this model is formulated in 3D.
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3.3 One-dimensional Models for Elongation of
Slender Tissues

Roots and shoots can be long and slender, encouraging the use of a spatially
1D description. Following the pioneering work of Silk,25 let us consider how
to model a line of elongating cells, moving from a discrete description of
individual cells formulated as sets of ordinary differential equations (ODEs)
to a continuous description formulated using PDEs.

3.3.1 A Continuous Model for Primary Root Growth

A primary root has a meristem at its tip, in which cell division and differ-
entiation take place. Immediately behind the meristem is an elongation zone
(EZ), in which tightly adherent cells lengthen rapidly before maturing. In
this simple treatment, we will assume no cell division takes place in the EZ.
In the frame of reference of the root tip, there is a flux of cells through the EZ
in the shootward direction, leaving the EZ at some speed vN. Mature cells
are stationary with respect to the plant and its environment, implying that in
this frame of reference the elongation zone and meristem propagate
downward through soil at speed vN.

Let x measure distance along a line of root cells, measured from the meristem.
We suppose cells are introduced at x¼ 0 through a process of cell division. Let
cell j occupy Xj11(t)oxoXj(t), so that it has length Lj¼Xj�Xj11. Its speed with
respect to the meristem is Vj ¼ 1

2 ð _Xj þ _Xjþ1Þ. (It is convenient to label cells en-
tering the tissue with increasing values of j.) We assume each cell undergoes
elongation according to a Lockhart law before maturing at the downstream end
of the elongation zone. If cells enter the domain with fixed period t, then the
tissue will appear stationary when viewed through a stroboscope with the same
period, i.e. Xj(t)¼Xj11(tþ t), as illustrated in Figure 3.2.

Figure 3.2 A row of cells at time t (top) and at time tþ t (bottom), where t is the
division time over which a new cell enters the domain, in the frame of
reference of the meristem (left) from which the cells emerge. Mature
elongated cells exit the domain at the right. x measures distance from
the meristem; n is a variable counting (and anchored to) cells, increasing
in the opposite direction.
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The trajectories of cell vertices are shown in a space–time plot in
Figure 3.3. Horizontal distances between the curves show increasing cell
lengths. The slope of each curve diminishes with respect to x, reflecting
increasing speed with respect to the meristem. To understand how spa-
tial observations reveal the time-evolution of individual cells, we ap-
proximate the discrete model for individual cells as a continuous model
for a tissue.

Technical Comment. The following argument reveals an important rela-
tionship between Eulerian (laboratory-based) and Lagrangian (material-
based) quantities. If the cell length and speed vary sufficiently smoothly
with respect to j, we can imagine interpolating the discrete functions Lj

and Vj with smooth analogues l(n, t) and v(n, t), where n is a Lagrangian
variable such that l( j, t)¼ Lj(t) and v( j, t)¼ Vj(t). The location of cell
vertices is x( j, t)¼Xj(t). Approximating differences with derivatives,
so that

@x
@n

����
t
� Xjþ1 � Xj; t

@x
@t

����
n
� Xjðtþ tÞ � XjðtÞ; (3:14)

Figure 3.3 The elongation zone (EZ) along a root (between vertical dotted lines) is
characterised by a region of positive RER, indicated by the function G(x)
(sketched, top), where x measures distance from the meristem. Cells
enter the EZ at length l0, speed v0 at rate 1/t and leave with length bl0
and speed bv0, where the amplification factor b satisfies (17); the
increase of relative length l/l0 and speed v/v0 across the EZ is sketched
(top). The space–time diagram (bottom) shows cell vertex locations Xj(t).
The vertical red line indicates how Xj(t)¼Xj11(tþ t); horizontal distances
between curves indicate cell lengths.
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we have (to leading order)

l¼� @x
@n
; v¼ @x

@t
; t

@x
@t
þ @x
@n
¼ 0: (3:15)

We see immediately that l¼ tv, i.e. that the length of a cell is directly
related to its speed. It also follows via careful use of the chain rule that

@v
@x

����
t
¼ @v=@n
@x=@n

¼ @2x=@n@t
�l

¼ 1
l
@l
@t

����
n
�

_Lj

Lj
: (3:16)

Eqn (3.16) shows that the RER of individual cells (L_j/Lj) is directly related
to the spatial velocity gradient of the tissue (@v/@x). Because cell length
and speed are related by l¼ tv, the RER can be measured26,27 from an
image via (@l/@x) |t /t, which we will call G(x), say. (For a steadily growing
root, G(x) will not vary with time.) Eqn (3.16) also shows how the velocity
gradient can be written F_F�1, where F¼ @x/@n is a form of deformation
gradient.

Noting that spatial hormone distributions (of auxin in particular) regulate
cell expansion, we can model growth directly in a continuous framework
using position-dependent functions of extensibility and yield, which we
encompass in an RER distribution G(x) (Figure 3.3). We can integrate
@v/@x¼G(x) to recover vðxÞ¼ v0 þ

Ð x
0Gðx0Þdx0 and l(x)¼ tv, where l0¼ tv0 is

the length of cells where they enter the domain. G(x) is a hump-like func-
tion,26 confined (by definition) to an elongation zone (0oxoL, say). Mature
cells leave the elongation zone with length bl0 where

b¼ 1þ t
l0

ðL
0

Gðx0Þdx0: (3:17)

In a root, mature cells are stationary with respect to the surrounding soil,
implying that the speed with which the root tip penetrates the soil is
bv0¼ bl0/t. In Arabidopsis, b can be as large as 30.26

Technical Comment. The evolution of a scalar field m(x, t) (such as a
hormone concentration) within individual cells satisfies

@m
@t

����
n
¼ @m
@t

����
x

þ@m
@x

����
n

@x
@n
¼ @m

@t
þ v

@m
@x

; (3:18)

which students of fluid mechanics will recognise as a material or
Lagrangian derivative. This is equivalent to evaluating dm/dt along the
characteristic dx/dt¼ v. The cell vertex locations in Figure 3.3 illustrate
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the characteristics. A little algebra shows that the cell density, r¼ 1/l,
satisfies

@r
@t
þ @

@x
ðrvÞ¼ 0; (3:19)

which is equivalent to the mass conservation equation for a compressible
flow in one dimension. This demonstrates that the cell flux in the frame
of the root tip is rv (which is a constant, 1/t in the present simple ex-
ample). In the presence of cell division, eqn (3.19) would be sup-
plemented by a source term on its right-hand-side.

3.3.2 Growth Against an External Load

As an illustration, working on the assumption that spatial hormone patterns
regulate cell extensibility and yield, making f¼f(x) and Y¼ Y(x) functions of
position in eqn (3.10), the steady cell length distribution can be calculated from

1
t

dl
dx
¼fðxÞy P� S� YðxÞ=y½ �þ: (3:20)

Here eqn (3.16) has been used to write the RER as a spatial gradient and the
term S has been added to represent the compressive stress that runs along a
line of cells that are expanding against an axial load imposed at the tip of the
organ (e.g. a primary root), neglecting other loads on the cells. A crude model
of an elongation zone has Y¼ Y0 in 0oxoL and Y¼ Y1 in x4L, where Y0 is
sufficiently small to allow growth but Y1 is sufficiently large to suppress
growth. Then, assuming cells grow from length l0 at x¼ 0 to their mature
length bl0 at x¼L, where they move at speed vN with respect to the meri-
stem, it follows that

v1¼
bl0

t
¼ v0þ y P�S� Y0

y

	 

F; where F¼

ðL
0
fðxÞdx: (3:21)

Assuming mature cells are stationary with respect to their environment (soil
or agar), then the meristem moves with speed vN with respect to the en-
vironment. Eqn (3.21) illustrates how the speed of the root tip is determined
by the collective expansion of all the cells in the EZ. If this motion induces a
drag S¼ kdvN for some kd40, then

v1¼
ðl0=tÞ þ Py� Y0½ �F

1þ ykdF
: (3:22)

This expression illustrates how growth rates may be suppressed by an en-
vironmental drag kd via passive mechanical resistance; the drag may also
induce actively regulated changes of growth rate via thigmotropic or touch-
sensitive responses, which have not been modelled here.
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3.4 Quasi-1D Models for Bending of Slender Tissues
Previously, we scaled up the stress/strain-rate relation for a cell wall
(eqn (3.6)) to a single cell (eqn (3.10)), introducing the geometric parameter
y. Let us now repeat the exercise for multiple cells in a root cross-section
(Figure 3.4). We idealise it as a set of thin cell walls under tension con-
taining cytoplasm under turgor pressure P�P. Integration of a force bal-
ance across the whole root cross-section28 (assuming no external load on
the root), splitting the area integral into contributions from cytoplasm and
cell walls, gives

PA¼hYi þ 1
f

RERcell

� 

; for PA4 hYi; (3:23)

balancing the total force due to turgor with the net tension induced in
walls, modelled by eqn (3.6). Here area integrals of stresses over slender cell
walls have been reduced to line integrals of stress resultants, so that angle
brackets denote line integration along cell walls, accounting for variable
wall thickness if necessary; in the single-cell example in eqn (3.7), for
example, hYi was expressed as phY. A is the root cross-sectional area
(approximating the area containing cytoplasm) and turgor is assumed
uniform across the root. Suppose all cells elongate at the same rate, i.e. with
the same RER. Then

RER¼ 1

f�1� � ðPA� hYiÞ; for PA4 hYi; (3:24)

Figure 3.4 Left: An idealised representation of the cross-section of an Arabidopsis
primary root (adapted from28). In a tropic response, material properties
on one side of the root are altered with respect to the other, inducing
bending of the root centreline by differential expansion. The red line
indicates the axis around which the root bends and f measures per-
pendicular distance from this line. Right: a transverse view of the root
shows how the elongation rate is greater on the outer bend ( f40) than
the inner bend ( fo0); k�1 is the local radius of curvature.

Theoretical Tools and Concepts for Modelling Growing Plant Tissues 97



defining the effective extensibility hf�1i�1 and yield hYi of the cross-section.
This is the Lockhart equation once more, now upscaled (or homogenised)
for a complete root cross-section. An immediate consequence is that the
peripheral (epidermal) cells have the greatest contribution to hf�1i and hYi,
by virtue of having the largest length of cell walls of all layers.28

If material properties vary slightly across the root cross-section, then there
may be a slight gradient in RER across the cross-section, inducing bending
of the root centreline. This is encoded using the curvature k of the centre-
line. Let f measure perpendicular distance from a diameter across the root
(Figure 3.4), such that the diameter is parallel to the axis of curvature of the
root. Then a geometric argument (in the Technical Comment below) tells us
that RERcellERERþCGRf, where the curvature growth rate (CGR)¼dk/dt for
a root segment. A moment balance across the cross-section, assuming no
external couple on the root (multiply eqn (3.23) by f and integrate over the
cross-section28) reveals that

� f 2

f

� 

CGR¼h fYi þ f

f

� 

RER� P

ð
f dA; for PA 4 hYi: (3:25)

This shows how asymmetries in yield, extensibility and turgor (measured by
first spatial moments as integrals over cell walls) can each generate curva-
ture of the structure.

Technical Comment. To relate RERcell to CGR, consider a short segment
of root, with centreline arclength d0 and curvature k, subtending an angle
c at its centre of curvature, a distance 1/k from the centreline. Thus
c ¼d0/(1/k) ¼kd0. The arclength d through the segment a radial distance f
from the centreline subtends the same angle c. Thus kd0¼ d/[(1/k)þ f ]
and so d¼ d0 (1þ kf ). Assuming d0 and k are functions of time, and that
kf{1, then _d=d¼ _d0=d0 þ _kf , i.e. RERcell¼RERþCGR f for a cell a distance
f from the centreline of the segment.

Eqn (3.25) shows how transverse gradients in f are amplified by stretching
to induce bending. Considering this effect in isolation, we can write
dk/dt¼ A0RER for the root segment, where A0 characterises the material
asymmetry in extensibility across the root. If the curvature remains sufficiently
weak, we may define distance along the structure with arclength s instead of
linear distance x, but still exploit the 1D model derived in Section 3.3. From
eqn (3.18), we may write the CGR as a material derivative, so that

@k
@t
þ v

@k
@s
¼ A0

dv
ds
; (3:26)

showing how curvature of a root segment is amplified by stretching as it is
swept through the elongation zone.
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Technical Comment. We can use eqn (3.26) to write down a simple model of
root gravitropism. Let y0 be the angle of the root tip to the vertical and yN
the angle of root to the vertical at the top of the elongation zone (Figure 3.4).

Then y1 ¼ y0 þ
ÐL

0 kds. Assuming mature cells are immobile with respect to
their surroundings, that there are no external forces constraining lateral
motions of the elongation zone, and that the gravitropic signal is com-
municated rapidly (by auxin transport) to tissues in comparison to the
timescale for growth, then a model for the gravitropic response of the root is

@k
@t
þ v

@k
@s
¼ w

dv
ds

sin y1 �
ðL

0
kds

	 

;

dy1
dt
¼� k1v1 (3:27)

where eqn (3.27) must be solved with k(0, t)¼ 0 to determine k(L, t)� kN.
Here w is a parameter that measures the degree of asymmetry induced by
the gravitropic signal, arising from gravity sensing at the root tip. The
path of the root tip with respect to the surroundings is determined by the
evolution of yN as tissue is steadily extruded from the elongation zone at
axial speed vN. The constraints of the environment on the root’s motion
are an important omission.

The simple model (eqn (3.27)) is a variant of the famous ‘sine law’ model
for shoot gravitropism, which takes the form @k/@t¼�w sin y� gk, where
k¼ @y/@s.29–31 The w term reflects the local response to the gravity stimulus
that takes place in the shoot (the advective derivative has been neglected).
The g term models proprioception, an inherent tendency of the organ to
straighten; for a comprehensive review of posture control see Moulia et al.32

3.5 Constitutive Models for 3D Anisotropic Growing
Materials

To generalise the simple constitutive models of Section 3.2 from one to three
spatial dimensions, at either the cell or tissue level, we must reformulate
them using tensor calculus. Let us first briefly review descriptions of ma-
terials that have linear constitutive laws. We write stress as the symmetric
tensor r¼ rT (where T denotes transpose) such that the (vector) force per
unit area acting on a surface with unit normal n is r�n. A small deformation
u is characterised by strain e¼ 1

2 ðr	uþ ðr	uÞTÞ. An incompressible ma-
terial has r�u¼ tr(e)¼ 0 (where tr denotes trace), implying that material
elements do not change volume.

Technical Comment. To clarify notation, vectors are represented as 3�1 column
vectors with respect to Cartesian coordinates, and tensors as 3�3 matrices.
r is the spatial gradient operator, and can be written (@/@x, @/@y, @/@z)T or
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(@/@x1, @/@x2, @/@x3)T with respect to a right-handed Cartesian coordinate
system with unit vectors x̂, ŷ and ẑ. The dot product of two vectors a¼ (a1, a2, a3)T

and b¼ (b1, b2, b3)T is a�b¼ aTb¼ a1b1þ a2b2þ a3b3. Thus if u¼ (u1, u2, u3),
then r�u¼ @u1/@x1þ @u2/@x2þ @u3/@x3. The outer product # is defined
such that {a # b}ij� {abT}ij¼ aibj for i and j taking values 1, 2 and 3, and
(a # b)T¼ (abT)T¼baT¼b # a.

In linear elasticity, we assume a linear relation between stress and strain,
of the form r¼C:e, where C is a fourth-order stiffness tensor. (In terms of
components, sij ¼

P
k;l

Cijklekl.) For a homogeneous isotropic material (a very

poor description of plant tissues), C is characterised by just two parameters
(despite having 81 components), the elastic Lamé constants l and m.

Technical Comment. Using index notation, symmetry and related argu-
ments, it can be shown that

Cijkl¼ ldijdklþ m(dikdjlþ dildjk) (3.28)

where dij¼ 1 if i¼ j and 0 otherwise, giving r¼lItr(e)þ 2me, where I is the
second-order identity tensor. In the incompressible limit, l-N and tr(e)-0
with their product remaining finite, in the form of a Lagrange multiplier
(�p, a pressure). In this case, stress and strain are related in 3D by

r¼ �pIþ 2me, (3.29)

with m sometimes termed the shear modulus. To illustrate how this gener-
alises the 1D model presented in Section 3.2.1, consider an incompressible
rod undergoing uniaxial extension, with u¼ a zẑ� 1

2 xx̂ � 1
2 yŷ

� �
, so that

e¼ a ẑ 	 ẑ� 1
2 x̂ 	 x̂ � 1

2 ŷ 	 ŷ
� �

. The transverse components of stress
(in the x and y directions) vanish if p¼ �ma, in which case the axial (z)
component of stress is 3ma. Thus we recover the 1D description of linear
elasticity, with a linear relation between axial stress and axial strain a, with
coefficient E¼ 3m.

An incompressible isotropic viscous material with a linear stress/strain-
rate relation (i.e. a Newtonian fluid) satisfies a relation analogous to that
of an incompressible elastic material, namely r¼� pIþ 2Ze_ , where Z is a
viscosity and e_ is a rate-of-strain tensor, defined in terms of the velocity field
v as _e¼ 1

2 ðr 	 v þ ðr 	 vÞTÞ with r�v¼ 0. Pressure p appears again as an
isotropic component of the stress, ensuring incompressibility.

3.5.1 Anisotropy

The plant cell wall can be modelled as a composite fibre-reinforced material,
having cellulose microfibrils embedded in a pectin matrix. The anisotropic
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structure of the cell wall, combined with the orientation of cell walls within a
tissue, is crucial to the plant’s ability to alter its shape in order to adapt to its
environment. It is instructive to examine the form of the elastic stiffness
tensor for a segment of cell wall, treating it as a thin sheet (so using a 2D
approximation). Let a be a unit vector in the fibre direction, lying in the
plane of the sheet, and assume all fibres are locally parallel (an over-sim-
plification). The material is then considered to be transversely isotropic, re-
quiring us to distinguish quantities aligned in the fibre direction (8) from
those in the perpendicular direction within the plane of the sheet (>).

Consider small deformations, for which the stress–strain relation remains
linear (a nonlinear theory is also available33). We define the structure tensor
A¼ a # a, the strain magnitude in the fibre direction e8¼ a�e�a, and the
strain in the fibre direction ea¼ (e�a) # aþ a # (e�a). Then, in the in-
compressible limit, the stiffness tensor can be simplified (using symmetry
arguments34) to give a stress–strain relation of the form

r¼�pIþ m2e8Aþ 2m>(e–ea)þ 2msea, (3.30)

where m2, m> and ms are constants (elastic moduli). Thus in addition to the
familiar stress components (�pIþ 2m>e) there are additional contributions
due to fibres, involving two additional material parameters. We can interpret
the constants by examining the stress–strain relation in some special cases.

Technical Comment. In a 2D plane containing the fibre direction, a local
basis is provided by orthogonal unit vectors a and b where a�b¼ 0, a�a¼ 1
and b�b¼ 1. Consider a 2D deformation with strain e¼ l(a # a�b # b)
for some constant l, implying extension in the fibre direction and
compression orthogonal to this (with no deformation in the direction
normal to the wall, making this a plane strain approximation). Then
e8¼ l, ea¼ la # a is the tensile strain in the fibre direction, e� ea¼�lb
# b is the compressive strain orthogonal to the fibres, and
r¼� pIþ (m2þ 2ms)eaþ 2m>(e� ea). For this deformation, reading off the
stresses in the 8 and > directions, we see that the effective extensional
stiffness in the fibre direction is mk ¼ ms þ 1

2 m2, while that perpendicular to
the fibres is m>. Likewise, a shear deformation, for which e ¼ g (a # bþb
# a) for some constant g, has r¼� pIþ 2mse, identifying ms as an elastic
shear modulus.

Typically, fibre-reinforced materials can be very stiff in the fibre direction,
potentially restricting any stretching, so that mk ¼ ms þ 1

2 m2 c m?. This is a
key property exploited by plant cell walls to avoid radial expansion while
allowing axial elongation. In the extreme limit, m2-N and e8-0 with their
product remaining finite. We can introduce a Lagrange multiplier T to
eqn (3.30), representing a tension induced in the fibres, giving

r¼� pIþTAþ 2m>(e–ea)þ 2msea. (3.31)
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In this case, just two parameters, the matrix stiffness m> and shear stiffness
ms, regulate the restricted motion, and the induced tension T ensures no
stretching in the fibre direction.

Technical Comment. This approach has a direct analogue for anisotropic
fluid motion, with strains e, ea, e8 replaced by strain rates e_ , e_a, e_8 and
elastic moduli replaced by viscosities Z2, Z> and Zs.

35 Fluids have the
advantage that a linear constitutive law can be used to describe large
deformations, but then the fibres will deform with the fluid. They evolve
according to

@a
@t
þ v � rð Þaþ za¼ a � rð Þv (3:32)

where z¼ 1
2 a � ðr 	 v þ ðr 	 vÞTÞ � a is the component of the rate-of-

strain tensor in the fibre direction. We recognise the first two terms as a
material derivative; the remaining terms suppress stretching of a by the
flow, ensuring that a�a¼ 1 throughout.

So far, we have described the effects of a population of aligned fibres. For a
material with fibre orientations a(O) having a distribution r(O) over solid
angle O, the stiffness tensor can have an isotropic component of the form
(3.28), plus an anisotropic component of the form

Cf ¼ Yf

ð
A 	 ArðOÞdO (3:33)

for some stiffness parameter Yf. If the fibres lie in a plane, the integral is over
the polar angle y and six independent components of Cf can be derived.36,37

In a 2D computational model of individual cells in an elongated tissue,
Fozard et al.38 combined a finite element discretisation of an anisotropic
linear constitutive law (eqn (3.30)) for periclinal cell walls (parallel to the
tissue axis) with a scalar Lockhart model for anticlinal cell walls (orthogonal
to the tissue axis), to mimic root bending.

3.5.2 Growth in Three Dimensions

Large deformations require a nonlinear elastic theory, which brings further
technical complications, many of which are bypassed in the short account
below. First, it is necessary to distinguish between a reference (Lagrangian)
state and a deformed state, with deformations described by a mapping be-
tween them. From this one can define a deformation gradient F where
dx¼ FdX or Fij¼ @xi/@Xj. Here X labels material points in the undeformed
configuration and x(X, t) gives their location in the deformed state.
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Within this framework, growth is described by considering two mappings:
from the original state to an intermediate (grown) state; and from the grown
state to the physical state, accounting for elastic deformations. This de-
composition,15,16 which appears also in the theory of nonlinear plasticity,
has deformation gradient F¼ FeFg. Fg(t) represents time-dependent growth
at some time t and Fe the instantaneous elastic deformation that is required
to accommodate an imposed load.

The velocity of a material particle is v¼ x_ (for fixed X), so that the vel-
ocity gradient with respect to Lagrangian variables is @v/@X¼ (@v/@x)F but
also @v/@X¼ F_ . Thus the velocity gradient with respect to Eulerian vari-
ables is F_F�1¼ @v/@x, generalising eqn (3.16). In terms of the composite
deformation, F_F�1¼ FeF_gFg

�1 Fe
�1. Here the Fe tensors are (in the jargon)

pushing forward the velocity gradient in the intermediate state to the
current state, so we can identify F_gFg

�1 as the velocity gradient of the
unstressed grown state. This is taken as the analogue of e_g in eqn (3.12)
and (3.13).

Technical Comment. We can now see how the Lockhart model (eqn (3.3)
and (3.12)) can be formulated for 3D anisotropic materials,24,37 although
we will only touch on a few of the technical details, staying as close as
possible to the simpler models we have seen so far. Considering first
purely elastic deformations, the second Piola–Kirchoff stress Se and the
Lagrangian strain Ee¼ 1

2 ðF
T
e Fe � IÞ are related via a strain energy function W

as Se¼ @W/@Ee. In general, W is a function of strain invariants, which may
account for anisotropy. A simple approach uses the hyperelastic Hookean
model W¼ 1

2 Ee: C: Ee where C is a fourth-order stiffness tensor that ac-
commodates anisotropy, so that Se¼C : Ee and C¼ @2W/@2Ee. This is
generalised to incorporate growth using

Ee¼C�1 : Se, F_gF� 1
g ¼ g[Ee – EY]1 (3.34)

for some constant g. This can be written in terms of the driving stress Se,
which depends on turgor, and yield stress S0 as

F_gF� 1
g ¼ g[C�1 : (Se – S0)]1. (3.35)

Here the threshold term [�]1(a tensor ramp function37) is a simplified
version of more complex plasticity approaches,24 such that for a tensor T
decomposed into its eigenvalues ln and eigenvectors tn we have

T¼
Xd

n¼ 1

lntn 	 tn and ½T�þ ¼
Xd

n¼ 1

max ln; 0ð Þtn 	 tn: (3:36)

Note that in this model, a single stiffness tensor C captures anisotropy
both in the viscous creep (3.35) and in the elastic response (3.34).
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Boudon et al.24 have implemented this model by resolving individual cell
walls in a tissue using a 3D finite-element discretisation. A similar frame-
work was adopted by Bozorg et al.39 Models incoporating mechanical feed-
back on growth are reviewed by Ali et al.3

3.6 Discrete Modelling Approaches for Multicellular
Tissues

A popular class of models resolves the structure of individual cells in an
inherently discrete formulation. This approach can be computationally in-
tensive, but it avoids the requirement to average over cells in order to de-
scribe a tissue, thereby resolving features that may be lost in spatial
averaging. Furthermore, there is the advantage that biochemical processes
can be resolved in individual cells and coupled to mechanical processes.40–42

The continuum models of Section 3.5 are of sufficient complexity to require
solution by (typically) a finite-element method. In this top-down approach,
bulk (averaged) descriptions of tissue mechanics are projected down onto
individual elements. In contrast, in a bottom-up approach the mechanical
properties of each element are defined directly. The two approaches may not
always be consistent, as the top-down description requires fields to vary
smoothly from cell to cell and may rest on ad hoc approximations that are
not immediately related to properties at the cell scale. There is therefore a
logic in identifying individual cells as natural ‘elements’ in the spatial
discretisation.

Cell geometry can be represented in various ways. A popular grid-based
model is the Cellular Potts scheme, where an individual cell is represented
using sets of neighbouring elements on a fixed spatial grid. Using a suf-
ficiently fine grid, this method will resolve elaborate cell shapes, albeit at
high computational cost. At a much coarser level, cell-centre models assign
cells to a single spatial location and model cell–cell interactions. We focus
here on intermediate vertex-based descriptions, where a 2D (3D) cell is
treated as a polygon (polyhedron), allowing its shape to be defined eco-
nomically by the location of its vertices. In 2D, a monolayer is represented as
a tiling of the plane by polygons; in 3D, a tissue is defined by space-filling
polyhedra. The polygons need not be regular or periodic. Growth and
mechanics are simulated by deriving appropriate rules for the motion of the
vertices. For plant cells, which typically have a cytoplasm dominated by a
large vacuole at fixed turgor pressure, this is a natural approach as attention
can be focused on the mechanically influential cell walls.

Vertex-based models differ in their choice of constitutive assumption.
One popular model assigns to each cell a mechanical energy,43–46 which can
account for strain of individual cells and cell–cell adhesion. The arrange-
ment of cells in space is then determined by allowing cell configurations to
adjust until the global mechanical energy is minimised. Direct minimisa-
tion identifies one or more equilibria (the system can be ‘glassy’ with a
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rough energy landscape, with different minima accessed from different
initial conditions). Alternatively, a model for viscous dynamics is employed
to track the unsteady evolution to an equilibrium. Growth is modelled
through cell expansion (for example via a Lockhart-based model38) or
through cell division (requiring a model for cell cycling and division
orientation47).

3.6.1 The Mechanical Energy of a Cell

Cell-based models typically rely on simple geometric invariants (the perim-
eter, surface area or volume of a cell), defined with respect to ‘target’ values
of each at which the corresponding energy contribution is minimal. We
illustrate this for a 2D layer of cells; generalisations to 3D follow naturally.
(Mechanical quantities below are therefore defined per unit length in the
direction orthogonal to the plane of interest.) The energy of a single cell
(labelled by i) is often written43,45,48

Ui¼
1
2

KaðAi � A0Þ2 þ
1
2

KlðLi � L0Þ2; (3:37)

where Ka and Kl are positive parameters. The first term describes the energy
associated with the cell’s area Ai (so that large Ka constrains Ai to remain
close to a reference area A0), and so is a measure of the stiffness of the
cytoplasm. The second term characterises the energy associated with the
cell’s perimeter, and its deviation from a reference perimeter L0. Separately,
the contributions define a pressure and a tension for the cell defined by
@Ui/@Ai and @Ui/@Li, respectively, as

Pi¼Ka(Ai� A0), Ti¼Kl(Li� L0). (3.38)

For a single cell, Ui might be minimised by a configuration in which AioA0

and Li4L0, with the competition between bulk compression (Pio0) and
peripheral tension (Ti40) giving the cell an intrinsic rigidity (via so-called
tensegrity). The energy of a tissue formed of confluent cells can then be
written U ¼

P
i

Ui; additional terms might measure the strength of adhesion

between particular cell types.
Growth can be accommodated by allowing for cell expansion (varying

A0 or L0) or by explicitly modelling cell division. Conversely, the process of
cell death and extrusion of an individual cell from the monolayer can also be
described. Both division and extrusion change the topology of the mono-
layer, by introducing or removing cells. Cells may also undergo neighbour
exchange (through a so-called T1 transition). This reorganisation of the tissue
is a microscopic manifestation of plasticity. It is a common feature of de-
veloping animal tissues but is less common in plants, where cells typically
adhere tightly to their neighbours.
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Technical Comment. The strain energy of an elastic continuum is normally
defined in terms of strain invariants, measuring the deformation from a
reference state, expressed in terms of eigenvalues of (say) the right Cauchy–
Green tensor FTF. For a growing elastic material, the elastic strains are
measured relative to an evolving intermediate state. In contrast, the vertex-
based model uses a cell-based formulation that exploits natural geometric
invariants (cell area and cell perimeter) but which lacks a well-defined
reference state, leading to analogies with granular materials.49

Plant-specific variants of eqn (3.37) include the following model47 for the
superficial cells of the shoot apical meristem:

U ¼
X

jAwalls

1
2

Kw lj � l0
j

� �2
�
X

iAcells

PiAi �
X

iAcells

Pi;intVi;int: (3:39)

The first term describes tensile forces in anticlinal walls (with reference
length l0

j ); the second describes forces normal to anticlinal walls due to cell
turgor pressure Pi (assumed uniform in all cells); the third represents
pressure from the underlying tissues, producing a force acting in the dir-
ection normal to the cell layer. Anisotropy is introduced by making anticlinal
wall stiffness Kw a function of orientation. Minimisation of U, by movement
of cell vertices, brings the cell layer to equilibrium; slower cell growth was
implemented in this model47 using a Lockhart law

dl0
j

dt
¼ kg

lj � l0
j

l0
j

� Tg

" #
þ

(3:40)

for some extensibility-like parameter kg and a yield strain Tg. This framework
is readily extended to account for fluid transport between adjacent cells.50

For now, we restrict attention to the simpler model (eqn (3.37)). Related
approaches address turgor50,51 and cell shape.52

3.6.2 Cell Topology and Geometry

For large-scale discrete models, careful book-keeping is needed in order to
keep track of relationships between vertices, cell edges, cell faces, and so on
as a tissue evolves. Here we briefly outline one approach to address this,
illustrating the approach in 2D.49

An array of cells is defined in terms of a set of vertices (position vectors)
rk, k¼ 1,. . .,Nv, a set of oriented edges tj (of length lj¼ |tj|), j¼ 1,. . .,Ne and a set
of oriented cell faces ai (of area Ai), i¼ 1,. . .,Nc (Figures 3.5 and 3.6). Here rk and
tj are vectors in a 2D (x, y) plane, while ai¼ Aiei, where ei represents a rotation
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Figure 3.5 An illustration of the representation of cell topology through incidence
matrices. Two cells, joined by a single edge, are defined by 9 vertices, 10
edges and 2 faces. The orientations of edges and faces are prescribed
arbitrarily. The 10� 9 matrix A shows which edges and vertices are con-
nected (empty spaces are zeros), with 1 (�1) indicating an edge pointing into
(out of) a vertex. The 2� 10 matrix B shows which edges neighbour which
face, and which are coherent with (+1) or not coherent with (�1) the face.

Figure 3.6 A schematic summarising the forces associated with area and perimeter
changes in a vertex-based model. Unsigned incidence matrices indicate
if edge j neighbours vertex k (Ājk¼ 1) or if edge j neighbours cell i (B̄ij¼ 1).
ei is a p/2 rotation indicating the prescribed orientation of cell i (top
left); edges Bijtj of cell i are coherent with ei so that �Bijeitj rotates edges
by p/2 to construct outward normals to cell i, contributing to the area
change of cell i if vertex k is displaced (brown, bottom right). The
incidence matrix Ajk¼ 1 or �1 if oriented edge j points toward or out
of vertex k (top right), and is zero otherwise, so that �Ajk̂tj denotes unit
vectors along edges pointing away from vertex k, contributing to the
perimeter change of cell i if vertex k is displaced (green, bottom left).
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by 
p/2, i.e.
0 � 1

 1 0

� �
in terms of Cartesian coordinates. Orientations of

edges and faces are prescribed but arbitrary.
The topology of the monolayer (what connects with what) can be defined in

terms of two incidence matrices53 (Figure 3.5). A, with elements Ajk, is an
Ne�Nv matrix with elements 1 (or �1) when edge j is oriented into (or out of)
vertex k, and zero otherwise. B, with elements Bij, is an Nc�Ne matrix with
elements
 1 when edge j is on the boundary of cell i, taking values þ1 if the
edge is coherent with the orientation of the cell face and �1 if not; other-
wise, all elements of B are zero. Replacing �1 with 1 in each matrix produces
unsigned incidence matrices A and B, which identify neighbours but do not
indicate orientation. The Nc�Nv matrix C¼ 1

2 BA takes the value Cik ¼ 1 if
vertex k neighbours cell i, and is zero otherwise.

Technical Comment. A and B have interpretations as discrete derivatives,
while AT and BT are boundary operators, identifying vertices bounding an
edge or edges bounding a face.53 Since the edges of cells form closed
loops, they have no boundary and so ATBT¼ 0 and BA ¼ 0.

The geometry of the monolayer (measuring its size) is defined by magni-
tudes of lengths and areas. Edges are defined by tj ¼

P
k

Ajkrk (summing over

all vertices), from which lj ¼
ffiffiffiffiffiffiffiffiffiffi
tj � tj
p

can be evaluated, along with the unit
vector t̂j¼ tj/lj. The perimeter of cell i is then Li ¼

P
j

Bijli. (summing over all

edges). It follows that

@lj

@rk
¼ t̂jAjk and

@Li

@rk
¼
X

j

Bij t̂jAjk: (3:41)

�@Li/@rk identifies two unit vectors aligned with edges of cell i where
it meets vertex k, pointing out of the vertex (Figure 3.6). Some tedious
algebra49,54 reveals that

@Ai

@rk
¼� 1

2

X
j

eiBijtjAjk �
1
2

X
j

nijAjk: (3:42)

@Ai/@rk identifies two outward normal vectors associated with the edges of
vertex k bordering cell i (Figure 3.6).

3.6.3 Vertex Dynamics

Armed with eqn (3.41) and (3.42), showing how the length and perimeter
of cell i change when vertex k moves, we can now evaluate fik¼ dUi/drk,
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the first variation of the energy of cell i with respect to a small displacement
of vertex rk. This determines the elastic restoring force at rk acting on cell i as

f ik ¼
X

j

1
2

PieiBijtjAjk þ TiBij t̂jAjk

	 

: (3:43)

As Figure 3.6 illustrates, the force at vertex k due to cell i has contributions
from Pi acting along normals at the vertex, and from Ti acting along
tangents. In equilibrium, the net force at vertex k and the net force on cell
i must both vanish, i.e. X

i

f ik ¼ 0;
X

k

f ik ¼ 0: (3:44)

A common model applies a drag Zd to each vertex, so that the equilibrium is
reached by timestepping Nv coupled ODEs for rk(t) of the form

Zd
drk

dt
¼�

X
i

f ik: (3:45)

This is the evolution equation (or rather, Nv ordinary differential equations) for
vertex locations rk, coupled through the dependence of fik on rk via Ai and Li. An
initial condition for cell vertices may come from an image, or may be con-
structed using a Voronoi tessellation of the plane. Suitable boundary conditions
for the array of cells must also be chosen (a periodic box is a popular choice).
Eqn (3.45) is integrated until it reaches an equilibrium, satisfying (44a).

3.6.4 Cell and Tissue Stress

For a monolayer in equilibrium, evaluating
P

k
rk 	 f ik � Aisi, where ri is the

stress (force moment) associated with cell i, one finds after some
algebra54–57 that

ri¼ PiIþ
TiLi

Ai
Qi; where Qi �

1
Li

X
j

Bijlj t̂j 	 t̂j: (3:46)

A simple way of interpreting these terms is to consider that under an imposed
uniform strain E, Ai changes by AiI:E� Aitr(E) and Li changes by LiQi:E.57 It turns
out54 that the principal axes of the cell stress tensor (more specifcally, of Qi)
align with those of the cell’s shape tensor

P
k

Cikðrk � RiÞ 	 ðrk � RiÞ, where Ri

is the centroid of each cell, showing that cell shape and cell stress are intimately
coupled. The isotropic component of the stress in each cell 1

2 trðsiÞ reveals the
effective pressure in each cell

Peff ¼ Pi þ
TiLi

2Ai
(3:47)
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with contributions from both the bulk and the periphery. For an isolated cell
in equilibrium, with Peff¼ 0, we expect Pio0 (because AioA0) and Ti40
(because Li4L0), the typical state of a turgid plant cell. For example a cell at
fixed turgor, as in (1.39), has Pi¼�Pi.

The stress of the monolayer as a whole is

Ar¼
X

i

Airi¼
X

i

ðPiAiIþ TiLiQiÞ: (3:48)

These expressions for cell and tissue stress (eqn (3.46) and (3.48)) can be
compared with, for example, eqn (3.31), showing how the structure tensor
for each cell wall t̂j # t̂j contributes additively (via Qi) to the total stress,
resembling the structure tensor of fibres A.

Patterns of Peff can show inherently discrete features (such as force chains)
across cell monolayers.54 The cell stress (eqn (3.46)) and tissue stress
(eqn (3.48)) have been derived from an underlying energy (eqn (3.37)), and sit
outside a traditional continuum framework. However, the tissue as a whole
exhibits linearly elastic properties when perturbed from an equilibrium, and
plastic properties if cell rearrangements take place.

Technical Comment. Perturbing the monolayer about an equilibrium re-
veals its stiffness tensor as

C¼ 1
A

X
i

KaA2
i I 	 Iþ KlL

2
i Qi 	 Qi þ LiTiðBi � Qi 	 IÞ

� �
(3:49)

where Bi is a fourth-order tensor57 defined in terms of tj such that under
strain E, the change in LiQi is LiB: E. This is the discrete analogue of eqn
(3.28) or eqn (3.33). This expression shows explicitly how cell orientations
can induce anisotropy in the tissue. The effective tissue bulk and shear
moduli can be derived from C. If L0 becomes so large that Ti becomes
negative for some cells, then the cells lose resistance to shear (via an
unjamming phase transition58). Tissue rigidity is promoted by inducing
large tensions in cell walls. Notice that the tissue properties are recovered
as sums, without requiring (for example) a periodicity assumption,
commonly made when homogenising cellular materials.59

Further adaptions of the vertex model include hybridisation with a cen-
treline model of the kind described in Section 3.4.60

3.7 Plant Cell Wall Mechanics and the Origins of the
Lockhart Model

The primary plant cell wall is formed from an array of cellulose microfibrils,
crosslinked by hemicellulose, embedded in a pectin matrix. Enzymes target
distinct components: pectin methylesterase (PME) targets the matrix;
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xyloglucan endotransglucosylase/hydrolase (XTH) and expansin disrupt
crosslinks; and so on. Microstructural models of the cell wall can be used to
understand how enzyme action influences mechanical attributes such as
yield stress or extensibility, and how the wall’s architecture influences cell
and tissue dynamics.19 Cellulose self-assembles in a synthase complex that
migrates along cortical microtubules; thus the microtubules influence the
wall’s structure. The mechanosensitivity of microtubules and details of the
wall’s microstructure are active areas of research.5,11,47,61

3.7.1 The Matrix

We start with a very simple model of a growing cell wall as a thin viscous
sheet, deriving the relation between the axial stress resultant T in terms of its
strain rate, thickness h and viscosity Z.

Technical Comment. Consider a sheet of initial length L0, thickness h0 that is
subject to an extensional stretching flow of velocity magnitude U0. For an
incompressible Newtonian fluid, satisfying r�v¼ 0 and r�r¼ 0, where
r¼� pIþ Z(r# vþ (r# v)T) (see Section 3.5), the 2D Stokes’ equations are

@xuþ @yv¼ 0, 0¼�@xpþ Z(@2
xuþ @2

yu), 0¼�@ypþ Z(@2
xvþ @2

yv).

(3.50)

where the velocity field v¼ (u, v) is defined with respect to coordinates
(x, y) and @x is shorthand for @/@x. The components of the stress tensor are

sxx¼�pþ 2Z@xu, syy¼�pþ 2Z@yv, sxy¼ Z(@yuþ @xv). (3.51)

We assume the sheet is stress-free at its surfaces y¼ 0 and y¼ h
(i.e. sxy¼ syy¼ 0 there).

Eqn (3.50) and (3.51) can be simplified by exploiting the sheet’s slender
geometry, using the small parameter e� h0/L0{1. Write (x, y, h) ¼ L0

(x*, ey*, eh*), (u, v)¼U0(u*, ev*), (p, r)¼ Z(U0/L0)(p*, r*). Then in
0oy*oh*, we re-write (1.50, 1.51) in terms of dimensionless (starred)
variables as

@x*u*þ @y*v*¼ 0; 0¼�@x*p*þ @2
x*u*þ e�2@2

y*u*;
0¼�@y*p*þ e2@2

x*v*þ @2
y*v*;

(3:52)

with

sxx* ¼�p*þ 2@x*u*; syy* ¼�p*þ 2@y*v*;

sxy* ¼ e�1@y*u*þ e@x*v*:
(3:53)

Now expand all variables using u*¼ u*0þ e2u*1þ . . ., etc. At leading order,
@2

y*u0*¼ 0; furthermore s*
xy¼ 0 on y*¼ 0 and y*¼ h* implies @y*u0*¼ 0
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there. Thus u*0¼ u*0(x*,t*). @y* v0*¼�@x*u0* implies v0*¼� y*@x* u0* (as-

suming v*
0¼ 0 on y*¼ 0). Thus @2

y*v0*¼ 0, implying @y*p0*¼ 0. s*
0yy¼ 0 on

y*¼ 0 and h* implies p0*¼ 2@y*v0*¼� 2@x*u0*, giving finally that
s0xx* ¼ 4@x*u0*. Restoring this expression to dimensional units we obtain
the stress/strain-rate relation sxx¼ 4Z@xu, implying that the sheet has
extensional viscosity 4Z.

The stress resultant T¼ sxxh therefore satisfies T¼ 4Zh@xu, so that the
extensibility in eqn (3.6) (at least, that part of it arising from stretching of the
matrix) can be expressed in terms of wall thickness and viscosity as

f¼ 1/(4Z). (3.54)

For a wall of spatially uniform thickness, the extensional flow of material in
the wall (relative to a point on its outer surface) is v¼ (ax, �ay), where a is the
RER. In the absence of sources of wall material, the wall thickness satisfies
dh/dt¼�ah (stretching induces thinning). In practice, we expect metabolic
processes to be depositing material on the wall’s inner surface at y¼ h in
order to maintain the wall’s thickness during growth (Figure 3.7).

3.7.2 Fibres, Crosslinks and the Origins of the Lockhart
Model

Now consider a cylindrical cell, elongating along its axis, with fibres oriented
in the transverse (azimuthal) direction within the thin cell wall. Suppose the
fibres resist stretching, so that the strain-rate in the wall is e_ ¼ aẑ # ẑ� ar̂ # r̂.
Then the viscous analogue of eqn (3.31) gives the stress field as
r¼�pIþ T ĥ 	 ĥþ 2Z? _e. In this simple example, the hoop stress syy¼T that
inhibits swelling decouples from the axial extension. In practice, fibres that
are not exactly transverse will be rotated as the wall extends (via eqn (1.32)),
complicating the story.62 For example, fibres deposited at a fixed angle at the
inner wall will rotate toward the cell’s axis as the wall stretches, while
moving toward the outer wall; as they rotate, they suppress cell elongation.

Figure 3.7 A schematic of an element of wall undergoing stretching. At the inner
surface, matrix, fibres and crosslinks are assembled and deposited (blue
arrows). Fibres (green dots) are assumed to be normal to the page.
Crosslinks (purple) are extended by the stretching of the wall, breaking
before they reach the outer wall at y¼ 0. The wall elongates with velocity
field v¼ a(x, �y), where a is the RER.
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The cell’s effective extensibility then depends on the fibre orientation inte-
grated across the wall, which depends on the manner in which fibres were
deposited at earlier times.

To examine the role of crosslinks, consider the simplest possible scenario,
when fibrils are deposited transversely on the inner wall (perpendicular to
the axis of the cell), with hemicellulose crosslinks formed between them. As
the cell elongates, fibres migrate toward the outer wall of the cell, while
being separated by the stretching of the wall (Figure 3.7). The distance be-
tween fibres satisfies dL/dt¼ aL on dy/dt¼�ay, while the density of cross-
links between fibres, n(y, t), satisifes @tn� ay@yn¼�koffn, for some breakage
rate koff. We can model each crosslink as a spring with stiffness ks and un-
stressed length L0. Taking an off-rate (breakage rate) of the form

koff ¼ k0 exp b2 ksðL� L0Þ2

2kbT

� �
; (3:55)

where kbT is a unit of thermal energy and b{1 is a constant, then bonds
break close to the outer wall where crosslinks are sufficiently extended. (The
kinetics depend here on a ratio of mechanical to thermal energy; other
models63 estimate the mechanical energy as a force times a distance, which
is linear rather than quadratic in strain.) We are here assuming that broken
crosslinks cannot re-form within the wall. The stress resultant in the wall can
be modified to incorporate the additional effect of crosslinks as

T ¼
ðh

0
nðy; tÞksðL� L0Þdyþ 4Zha: (3:56)

This simple model can be used to determine the dependence of stress on the
RER a. If the RER is sufficiently small, crosslinks break close to the inner
surface of the wall (they break before migrating very far). Increasing the RER
carries crosslinks into the wall and extends them, increasing n and thus T. If
the RER is sufficiently large, crosslinks migrate close to the outer surface of
the wall before breaking once very extended. This is a nearly saturated state,
becoming insensitive to further increases in the RER. The net effect is a
nonlinear response between T and a, with characteristics of the plastic re-
sponse in eqn (3.2). For a strain increasing linearly in time at rate a, the
model shows an initial elastic response (with stiffness E¼ n0ksL0h), a long-
time viscous response characteristic of eqn (3.3).64 The yield stress has
magnitude Elog(1/b). Although crude, this simple model provides insights
into the microstructural components of the cell wall that regulate its rheo-
logical properties.

3.8 Outlook
Significant work needs to be done to further develop microscale models65

of cell wall structure that incorporate relevant biochemistry and
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thermodynamics,66 and then to scale these up to mechanical models of
whole tissues, to understand how cell wall architecture influences plant
morphology, building on recent progress in connecting microscale an-
isotropy67 or differential growth68 in slender structures to macroscopic
curving, twisting and torsion. As demonstrated in a recent integrative
model69 of shoot gravitropism, there is much to be gained by using careful
mathematical approximations that capture the core features of key processes
in an economic way, enabling tractable simulations of whole-organ be-
haviour. While many challenges remain, particularly in incorporating feed-
back processes driven by environmental stimuli, this review hopefully
demonstrates the variety and value of relatively simple theoretical models in
understanding the mechanisms and mechanics of plant growth.
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52. R. M. Merks, M. Guravage, D. Inzé and G. T. Beemster, VirtualLeaf: an
open-source framework for cell-based modeling of plant tissue growth
and development, Plant Physiol., 2011, 155, 656–666.

53. L. J. Grady and J. R. Polimeni, Discrete Calculus: Applied Analysis on
Graphs for Computational Science, Springer Science & Business Media,
2010.

54. A. Nestor-Bergmann, G. Goddard, S. Woolner and O. E. Jensen, A vertex-
based model relating cell shape and mechanical stress in an epithelium,
Math. Med. Biol., 2018, 35, 1–27.

55. S. Ishihara and K. Sugimura, Bayesian inference of force dynamics
during morphogenesis, J. Theor. Biol., 2012, 313, 201–211.

56. B. Guirao, S. U. Rigaud, F. Bosveld, A. Bailles, J. Lopez-Gay and
S. Ishihara, et al., Unified quantitative characterization of epithelial
tissue development, eLife, 2015, 4, e08519.

57. A. Nestor-Bergmann, E. Johns, S. Woolner and O. E. Jensen, Mechanical
characterization of disordered and anisotropic cellular monolayers,
Phys. Rev. E, 2018 May, 97, 052409.

58. D. Bi, J. H. Lopez, J. M. Schwarz and M. L. Manning, A density-
independent rigidity transition in biological tissues, Nat. Phys., 2015,
1074–1079.

59. N. Murisic, V. Hakim, I. G. Kevrekidis, S. Y. Shvartsman and B. Audoly,
From Discrete to Continuum Models of Three-Dimensional Deform-
ations in Epithelial Sheets, Biophys. J., 2015, 109, 154–163.

60. J. A. Fozard, M. J. Bennett, J. R. King and O. E. Jensen, Hybrid vertex-
midline modelling of elongated plant organs, Interface Focus, 2016,
6, 20160043.

61. S. A. Braybrook and H. Jönsson, Shifting foundations: the mechanical
cell wall and development, Curr. Opin. Plant Biol., 2016, 29, 115–120.

Theoretical Tools and Concepts for Modelling Growing Plant Tissues 117



62. R. J. Dyson and O. E. Jensen, A fibre-reinforced fluid model of aniso-
tropic plant cell growth, J. Fluid Mech., 2010, 655, 472–503.

63. O. Ali and J. Traas, Force-driven polymerization and turgor-induced wall
expansion, Trends Plant Sci., 2016, 21, 398–409.

64. R. J. Dyson, L. R. Band and O. E. Jensen, A model of crosslink kinetics in
the expanding plant cell wall: yield stress and enzyme action, J. Theor.
Biol., 2012, 307, 125–136.

65. H. Yi and V. M. Puri, Architecture-based multiscale computational
modeling of plant cell wall mechanics to examine the hydrogen-bonding
hypothesis of the cell wall network structure model, Plant Physiol., 2012,
160, 1281–1292.

66. A. Barbacci, M. Lahaye and V. Magnenet, Another brick in the cell wall:
biosynthesis dependent growth model, PLoS One, 2013, 8, e74400.

67. H. Wada, Hierarchical helical order in the twisted growth of plant
organs, Phys. Rev. Lett., 2012, 109, 128104.

68. D. E. Moulton, T. Lessinnes and A. Goriely, Morphoelastic Rods III:
Differential Growth and Curvature Generation in Elastic Filaments,
J. Mech. Phys. Solids, 2020, 104022.

69. D. E. Moulton, H. Oliveri and A. Goriely, Multiscale integration of
environmental stimuli in plant tropism produces complex behaviors,
Proc. Natl. Acad. Sci., 2020, 117(51), 32226–32237.

118 Chapter 3



CHAPTER 4

Negative Pressure and
Cavitation Dynamics in
Plant-like Structures

OLIVIER VINCENT

CNRS, Univ. Lyon, Univ. Claude Bernard Lyon 1, Institut Lumière matière,
F-69622, Villeurbanne, France
Email: olivier.vincent@cnrs.fr

4.1 Introduction

4.1.1 Negative Pressure

Liquids, similarly to solids, have internal cohesion. The individual molecules
have attractive interaction and a restoring force brings them back together if one
tries to pull them apart. Due to this internal cohesion, liquids can sustain tensile
stress, and can thus be put in a state where their pressure is absolutely negative.
Going back to the definition of pressure as a force per unit area, a state of negative
pressure means that the force exerted by the fluid on a surface is directed towards
the liquid and not towards the surface as it is for P40 (see Figure 4.1a–b). Note
that because pressure in a liquid is isotropic, the tensile stress applies in all
directions, while a solid can develop anisotropic stresses, e.g. with tensile stress
only in one direction and compressive stresses in the other directions.

A useful analogy is that of a chain of springs: if one stretches the chain,
each individual spring gets stretched and starts pulling on its neighbors; a
person holding the chain would feel a force directed towards the chain.
Similarly, a liquid at negative pressure is stretched: intermolecular distances
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are larger than in ambient conditions, which results in a global attractive
force between molecules, but also between the molecules and the container
they are in. Thus, while a liquid at positive pressure pushes on the walls of a
container, a liquid at negative pressure pulls on them (see Figure 4.1a–b).
Obviously, the state of negative pressure can be maintained only if adhesion
between the walls and the liquid is good. In the case of water, this means
that the walls of the container have to be somewhat hydrophilic. Because of
this stretched, tensile state, a liquid at negative pressure is also called under
tension, under stress, or simply stretched. This stretched state is metastable
and can relax by cavitation (see below).

It is useful to note here already that it is not only the sign of the pressure that
matters in cavitation phenomena, but its value compared to the saturation vapor
pressure, Psat. In particular, a liquid at positive pressure but with PoPsat is also
metastable and potentially subject to cavitation, and crossing the value P¼ 0 for
the liquid does not have particular consequences. Thus, the term ‘‘negative
pressure’’ in the following should be broadly interpreted as P� Psato0, and
‘‘stretched’’ as meaning ‘‘more stretched than at saturation’’. For the phenom-
ena we discuss in this chapter, this distinction remains anecdotal, because Psat is
several orders of magnitude below the typical negative pressures of interest
(�PcPsat), so that considering PsatC0 does not make a significant difference.

4.1.2 Cavitation

In a state of negative pressure, the liquid tends to ‘‘pull’’ on any interface it is
in contact with, and in particular it will tend to make a bubble grow (see
Figure 4.1c), if the bubble is sufficiently large.y Bubble growth only stops
when the negative pressure vanishes, which happens when bubble

Figure 4.1 (a) A liquid at positive pressure exerts an outward force on the walls of a
container, while (b) a liquid at negative pressure is in a tensile state and
exerts an inward force on the walls. The walls are represented as being
deformable, to illustrate the force applied by the fluid. (c) The tensile
state as in (b) not only ‘‘pulls’’ on the walls but also on other interfaces;
in particular, this tends to make sufficiently large bubbles grow,
resulting in cavitation.

yFollowing the remark about PoPsat, bubble growth also happens if 0oPoPsat, because the
bubble fills with water vapor at Psat, and the pressure in the liquid is below Psat, so that there is a
net outwards driving force on the bubble.
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expansion has allowed the stretched liquid to contract back into a
non-stretched state. This process of bubble expansion associated with the
disappearance of negative pressure and the relaxation of metastability is
what we define as cavitation.

Following this definition, cavitation requires a germ, or nucleus, i.e. a
microscopic bubble in the liquid that gets stretched by the tensile forces
in the liquid into a macroscopic bubble. While such germs can pre-exist
(e.g. bubbles trapped in walls, or stabilized free-floating bubbles), they can
also form spontaneously by activation from thermal fluctuations.

It may seem at first sight that liquid at negative pressure should be un-
stable, because cavitation would always occur from existing or activated
germs. However, another driving force counteracts the stretching effect of
the negative pressure on bubbles: surface tension, which accounts for the
energetic cost of having a liquid–vapor interface and tends to make it as
small as possible, i.e. make the bubble collapse. Because the surface-to-
volume ratio increases when bubble size decreases, surface tension dom-
inates for small bubbles. In other words, germs have to be above a critical
size to lead to cavitation. Since large germs are less likely than small germs to
pre-exist or to form spontaneously, a liquid at negative pressure is in fact not
unstable but metastable, and can be long-lived. In practice, cavitation occurs
only if the magnitude of the negative pressure exceeds some threshold that
greatly depends on the microscopic mechanism at the origin of cavitation.

Cavitation is a particular type of nucleation due to pressure changes.
Boiling (nucleation of vapor due to temperature changes) is another very
similar nucleation phenomenon. We note that we use a broad definition of
cavitation (destruction of a state of negative pressure by the formation of a
macroscopic bubble) that thus naturally includes the case of air seeding
frequently discussed in plants, where the initial origin of the cavitation
bubble is the aspiration of a meniscus through a membrane or porous
structure. In fact, the cavitation dynamics phenomena that we describe in
this chapter are mostly independent on the microscopic mechanism that
leads to nucleation.

4.1.3 Negative Pressure and Cavitation in Plants

In the context of plants, water at negative pressure is ubiquitous. Vascular
plants like trees actually use that negative pressure as a suction force to drive
sap flow from the root to the leaves in the xylem tissue. This process is driven
by transpiration, i.e. natural evaporation from the xylem into the atmosphere
in the leaves.6–8 Most trees routinely experience tens of atmospheres of
negative pressure in their xylem during the day7–9 and thus contain large
amounts of water under stress, which is metastable and susceptible to
cavitation (see Figure 4.2a). Here, cavitation is detrimental, because it
eventually results in air-filling (embolism) of xylem conduits, which disrupts
the upwards flow of sap (see Figure 4.2b). Spreading of embolism through
the whole vascular structure would be catastrophic, but xylem presents a
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Figure 4.2 (a) Birth and growth of a cavitation bubble in a dehydrating slice of
vascular tissue (xylem) of a pine tree. (b) In-vivo observation of the
resulting embolism using X-ray microtomography (transverse and
longitudinal cross-sections on left and right, respectively); black areas
are gas-filled. (c) Simultaneous cavitation in neighboring cells of
a fern sporangium, at the basis of a catapult-like spore ejection
mechanism. (d) Another cavitation-based spore ejection mechanism in
a fungus. (e) Cavitation induced by osmotic dehydration in fungal
spores. Panels (a) and (c) reproduced from ref. 1 and 2 with permission
from the Royal Society, Copyright 2014 and 2016 respectively; permission
conveyed through Copyright Clearance Center, Inc. Panels (b) and
(d) reproduced from ref. 3 and 4 with permission from Oxford University
Press, Copyright 2016 and 1963, respectively. Panel (e) reproduced from
ref. 5 with permission from John Wiley and Sons, Copyright r 1970 New
Phytologist Trust.
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segmented structure made of a large number of conducting elements
(vessels, tracheids) interconnected by nanoporous membranes (pits); if one of
the elements fails by cavitation and gets embolized, spreading to the ad-
jacent elements is prevented by the pits (at least temporarily), and embolism
is contained (see e.g. Figure 4.2b, right panel where a single embolized
tracheid is surrounded by intact water-filled tracheids).

In other situations, however, plants use cavitation to their advantage. For
example, some species of ferns use simultaneous cavitation in an annular
structure as a trigger for a catapult-like ejection mechanism for their spores
(ref. 2 and 10 see Figure 4.2c). There, the slow build-up of negative pressure
prior to cavitation also originates from natural dehydration of the cells in the
annulus due to evaporation into the surrounding air when conditions get
dry. Not far from the plant kingdom, negative pressure and cavitation are
also observed in fungi (see Figure 4.2d–e), where they can be at the basis of
other spore dispersion strategies (ref. 5 and 11 see Figure 4.2d).

We briefly note that negative pressure and cavitation can also be found in
the animal kingdom. In particular, several species of shrimp use cavitation
bubbles as a hunting tool (pistol shrimp,12 mantis shrimp13); octopuses and
squids can also generate a few atmospheres of negative pressure, and cavi-
tation is thought to limit their adhesion strength.14

The situations described above for plants and fungi have common fea-
tures. First, water under negative pressure is contained in closed, cellular
structures that are rigid enough to sustain the inner tension force without
collapsing. Second, these structures allow for exchange of water with the
surrounding environment (other cells or air) through the porous walls and/
or through specialized porous membranes (pits). Last, negative pressure is
generated by dehydration (transpiration at the leaf level for trees, evapor-
ation through cell walls for the other structures) and sustains typical values
in the range �10 to �100 bars for large amounts of time.

4.1.4 Chapter Contents

In this chapter, we discuss the general physics of negative pressure and
cavitation in water for situations similar to those found in plants and fungi:
large, static negative pressures produced by dehydration in a liquid confined
in porous, cellular structures.

First, we introduce important concepts related to the mechanics and
thermodynamics of water (Section 4.2). Then, we explain how negative
pressures are generated, focusing on the effect of dehydration from cells
(Section 4.3). Next, we discuss various microscopic mechanisms that may
lead to cavitation in liquids at negative pressure (Section 4.4). In the next
section, we present an extension of classical nucleation theory that describes
cavitation in closed, elastic cells (Section 4.5). The last two sections illustrate
the various theoretical concepts established previously with experimental
results on artificial systems reproducing some features found in plants: we
first describe the rich dynamics of a cavitation in a single cell, that spans
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several orders of magnitude of timescales (Section 4.6), before discussing the
spatio-temporal patterns of cavitation (and its propagation) in extended
systems containing many, interconnected cells (Section 4.7).

This chapter presents a physicist’s perspective on the basics of negative
pressure and cavitation in plant-like, cellular structures and thus focuses on
a local level. There are many other aspects of water relations and flow in
plants that are not discussed here (e.g. global sap flow, stomatal control
in the leaves, exchange between xylem and phloem, etc.). For more details on
the physiology and water transport mechanisms in plants and fungi, we
refer the reader to classic books6,11,15 and recent reviews on various aspect
of water stress and transport in plants.7–9,16 We also recommend
exhaustive books17,18 and reviews19,20 on the physics of metastable water and
cavitation.

4.2 Water Properties
In this section, we introduce and define several properties of water that are
relevant in the context of negative pressure and for the phenomenon of
cavitation.

4.2.1 Cohesion and Surface Tension

Liquid water has large internal cohesion, which is mostly due to the pres-
ence of hydrogen bonds. As a result, since molecules strongly bond together,
exposing water molecules at an interface is highly unfavorable, and the
surface tension of liquid water is particularly high: g¼ 72�10�3 N m�1 at
25 1C. As a comparison, the surface tension of organic liquids such as
ethanol or acetone is less than a third of that value (B22�10�3 N m�1).

From the value of the surface tension, one can illustrate liquid water’s
cohesion with the following thought experiment. Imagine ‘‘pulling’’ on
water sufficiently strongly to separate the molecules further than their ty-
pical interaction distance, d, thus ‘‘breaking open’’ a liquid column. The
energy associated with the newly created interfaces, E¼ 2gS, must be equal
to the work WCFpull�d of the force pulling the liquid apart. One can thus
estimate that in order to ‘‘break open’’ a water column it takes a stress
DPpull¼ Fpull/S¼ 2g/dB300 MPa, assuming dB0.5 nm. From this rough es-
timate, we can already see that liquid water should be able to withstand very
large tensile stresses, i.e. negative pressure. We refine this estimate in
Section 4.2.2.

Note that contrary to liquids, gases do not have internal cohesion. As a
result, they cannot be brought to a state of negative pressure: ‘‘pulling’’ on a
gas will just dilute it towards the limit of zero pressure for infinite expansion.
A direct consequence of this remark is that a liquid at negative pressure
cannot coexist with a gas, except in situations where something (the surface
tension of an interface, a membrane, etc.) allows for a pressure mismatch
between the two phases.

124 Chapter 4



4.2.2 Compressibility and Spinodal

Liquid water under negative pressure is stretched, and the amount by which
it stretches is related to the compressibility of the liquid. Thus, compress-
ibility plays a natural role in cavitation phenomena and will be involved in
several of the sections of this chapter. Also, as we discuss briefly at the end of
this section, the evolution of compressibility with pressure provides a way to
estimate the tensile strength of the liquid through its spinodal.

The value of the isothermal compressibility, wq¼ (�1/Vq)(@Vq/@P)T, for
liquid water is wq¼ 0.45 GPa�1 i.e. its bulk modulus is Kq¼ 1/wq¼ 2.2 GPa; in
other words, a pressure of 22 MPa will contract water’s volume, Vq, by 1%.

Generally, as long as the variations of pressure are not too large
(|wqDP|{1), it is a good approximation to relate the variation of volume of
the liquid to variations of pressure through the linear approximation

(Vq� Vq,ref)/Vq,ref¼�wq(P� Pref) (4.1)

where we consider deviations from a reference state at volume and pressure
(Vq,ref,Pref). In other words, eqn (4.1) assumes wq constant in the range of
pressure of interest. This linear approximation expressed by eqn (4.1) is
largely sufficient to describe the situations we consider in this chapter,
where the negative pressures have a magnitude of at most C20 MPa, i.e. two
orders of magnitude below Kq¼ 1/wq.

For negative pressures of larger magnitude, it would be necessary to take into
account the variations of wq with P. In fact, it is interesting to note that the
variation of wq with pressure offers another way to estimate the cohesive tensile
strength of liquid water. Indeed, going back to our thought experiment from
above (Section 4.2.1), compressibility is the reason why molecules get further
apart when we try to ‘‘pull’’ on a liquid. However, because the range of inter-
action of the molecules is not infinite, there must be a point where the inter-
action starts getting weaker and cannot resist the pulling force anymore. At this
point, tensile stress as a function of volume reaches a maximum, in other words
the bulk modulus becomes zero and the compressibility wq diverges. A way to
estimate the tensile strength of the liquid is thus to extrapolate the equation of
state of the liquid to estimate where Kq¼ 1/wq is zero. Following this approach,
values of tensile strength in the vicinity of 200 MPa (i.e. a negative pressure of
�200 MPa) can be found at ambient temperature.20,21 This validates the rough
estimate made above from the value of the liquid’s surface tension.

The value of PC�200 MPa actually corresponds to the spinodal of the
liquid, where it becomes mechanically unstable and spontaneously breaks
apart. In practice, this point is never reached because cavitation appears
beforehand by various mechanisms (see Section 4.4).

4.2.3 Saturation Pressure, Phase Diagram

So far we have discussed mechanical properties of water. Now, we move to
thermodynamic considerations. Generally, the most stable phase of water
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depends on conditions of pressure and temperature. It is useful to repre-
sent these conditions as a point in the pressure–temperature (P–T) phase
diagram (see Figure 4.3). The diagram defines three zones corresponding
to the zones where ice, liquid water and water vapor are the most stable,
respectively.z The line separating the zones of stability of the vapor and
liquid phases between the triple point and the critical point defines the
saturation vapor pressure, Psat(T); in ambient conditions (e.g. T¼ 25 1C),
PsatC3 kPa, a value much smaller than the atmospheric pressure,
PatmC100 kPa.

Most of us are familiar (e.g. when cooking pasta) with the fact that when
heated up, water boils at 100 1C because one crosses the liquid–vapor
coexistence line and one enters the domain where the vapor is most stable
(see Figure 4.3, path 1). Boiling occurs because for T4100 1C, Psat(T) is larger
than atmospheric pressure Patm The coexistence line can also be crossed by
decreasing the pressure (see Figure 4.3, path 2). In this case, we do not call
the nucleation of vapor bubbles boiling, but cavitation. Cavitation occurs
because the liquid pressure falls below the value of Psat at ambient tem-
perature. In practice, neither boiling nor cavitation necessarily happen
exactly when the coexistence line Psat(T) is crossed, because of the existence
of metastable states.

4.2.4 Metastable States

The liquid-to-vapor phase transition requires the formation of a bubble, i.e.
the creation of a liquid–vapor interface. Due to the large surface tension
of water, this process is particularly unfavorable and an energy barrier

Figure 4.3 Schematic pressure–temperature phase diagram of water. Psat(T) is the
saturation vapor pressure, which represents the coexistence line between
the zones of stability of the liquid and vapor phases. When a liquid
(point a) is heated up (path 1), vapor can become the stable phase
(beyond point b): vapor bubbles can spontaneously nucleate, corres-
ponding to boiling. When pressure is decreased from point a (path 2),
vapor can also become the stable phase (below point c) and the nucle-
ation of vapor bubbles is called cavitation in this case.

zIn reality, more zones are present in the ice domain because there exist different types of ice.
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(and a critical bubble size, see Introduction) must be overcome to form a
bubble. As a result, the liquid state can persist even when the coexistence
line is crossed (i.e. for PoPsat). This situation is metastable: small fluctu-
ations relax back to the liquid state, but a large, less likely fluctuation can
make the system cross the energy barrier and create a stable bubble, i.e.
induce cavitation or boiling. The further away from the coexistence line one
penetrates into the zone of vapor stability in the P–T phase diagram, the
smaller the energy barrier is and the more likely nucleation is; see the sec-
tion on nucleation theory for an illustration of these aspects (Section 4.5).

Similar metastable states exist for the vapor to liquid phase transition
(supersaturated vapor), or the liquid to ice transition (supercooled liquid).y

Metastable liquid water below Psat is often called superheated when following
the boiling route, and stretched when following the cavitation route. Indeed,
lowering the pressure results in an expansion of the liquid due to water’s
compressibility (see Section 4.2.2).

4.2.5 Chemical Potential, Water Potential

Thermodynamic driving forces and equilibria are conveniently described by
the chemical potential of water, m (J mol�1), which combines energetic and
entropic contributions and enables comparison of the relative stability of the
same substance in different phases: liquid water (mq), water vapor (mv).
Molecules spontaneously move from areas of high m to areas of low
m and equilibrium is attained when the chemical potential is identical in all
parts of a system. In particular, at the coexistence line (P¼ Psat(T)),
mq(Psat)¼ mv(Psat)¼ msat(T).

The concept of water potential (C, in Pa) is more widely used in the plant
science community instead of chemical potential:

C¼ m�mref

vm
(4:2)

where mref(T) is the chemical potential of a reference state, usually chosen to
be pure liquid water at atmospheric pressure (P¼ Patm), at the temperature
of interest, T; vm is the molar volume of liquid water in the reference state
(vm¼ 1.807�10�5 m3 mol�1 at T¼ 25 1C). Thus, chemical potential and water
potential only differ by a multiplicative factor and an additive constant, and
fundamentally represent the same quantity. Water potential is convenient to
use, because it has units of pressure and is zero for bulk water at ambient
conditions.

The reason of using P¼ Patm instead of P¼ Psat as a reference state is not
often discussed, but this choice has physical meaning. Indeed, Psat cor-
responds to the equilibrium between liquid water and pure water vapor; in

yFor example, supercooled water can be brought down to C� 40 1C before nucleation of ice
occurs. Supercooled water plays a large role in the atmosphere and for the survival of some
living organisms in the winter.17
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this situation, both phases are at the same pressure. Now, let us consider
liquid water situated in air at atmospheric pressure (e.g. in an open bottle)
and evaluate equilibrium with water vapor in the air. The liquid phase, due
to mechanical equilibrium with air, is at P¼ Patm, while the vapor phase is
characterized by its partial vapor pressure, paP. Due to this pressure mis-
match, equilibrium between the two phases occurs at a different vapor
pressure, psataPsat in the presence of air: the condition for equilibrium is
(p¼ psat, P¼ Patm), with psat4Psat (see Appendix A). The difference between
psat and Psat is small and difficult to measure in practice (e.g. at 25 1C,
Psat¼ 3170 Pa, psat¼ 3172 Pa, i.e. a difference of 0.07%), so that both sat-
uration pressures are usually assumed to be the same. However, it is useful
to keep the distinction between the two definitions in mind, in order to
avoid thermodynamic inconsistencies in calculations.

The conclusion from the previous paragraph is that while Psat corresponds
to a liquid–vapor equilibrium of the pure water substance (i.e. in vacuum),
the equilibrium state with liquid water at total pressure, P¼ Patm and with
water vapor at partial pressure, p¼ psat4Psat is a true saturation state of the
system when considering water in air at atmospheric pressure. It is thus
natural to use this state as a reference when dealing with processes occur-
ring in air. Using this reference, eqn (4.2) yields

Cq¼DP�P (4.3)

for liquid water, where DP ¼ P� Patm is the pressure difference with respect
to atmospheric pressure, and P is the osmotic pressure; P¼ 0 for pure
water, and PCRTC40 when solutes are present at a concentration
C (mol m�3).8,15,22 DP is a purely mechanical contribution, while P is an
entropic contribution associated with the colligative decrease of chemical
potential that occurs when mixing water with a solute. Here, we neglect the
contribution of gravity (DCg¼ rgz, with r the density of liquid water, g the
acceleration of gravity and z the elevation) that will not be needed for
the discussions in this chapter, and is only significant to compare water at
large height differences, e.g. in tall trees (rgC0.01 MPa m�1). We have also
neglected the contribution due to the compressibility of water. Indeed, for
consistency with eqn (4.1), an additional term DCw¼ wqDP2/2 should be
included. However, this contribution is also negligible for the conditions
considered in this chapter (|DCw/C|o0.5% for C4�20 MPa); we thus
neglect this term for simplicity.

For water vapor in air,

Cv¼
RT
vm

ln
p

psat

� �
(4:4)

where psat is the saturation vapor pressure in air defined above; a¼ p/psat is
the activity of water vapor or its relative humidity: for example a¼ 0.85 cor-
responds to a relative humidity of 85%RH. Although this is rarely men-
tioned, Cv is impacted by gravity in the exact same way as Cq (i.e., DC¼ rgz,
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where r is still the density of liquid water).z Again, we neglect this
effect here.

Similarly to chemical potential (m), water potential (C) is the natural
driving force for transport and equilibria within a single phase or between
phases. Transport occurs towards areas of lower C and equilibrium occurs
when the driving force vanishes, i.e. equal C in different parts of the system.

4.2.6 Evaporation vs. Cavitation

Eqn (4.4) implies that the water potential of water vapor in air is always negative
when relative humidity is less than 100%RH (ao1). This means that an open
container with pure, liquid water (Cq¼ 0, see eqn (4.3)) always tends to evap-
orate, except in rare cases of 100%RH humidity, because water molecules lower
their water potential by moving from the liquid phase to the vapor phase. This
corresponds to the fact that when ao1, there are more molecules per unit time
leaving the liquid towards the vapor than molecules coming back from the
vapor into the liquid, so that over time the liquid loses mass. Evaporation thus
occurs at the interface between liquid and air due to a transport imbalance
between the liquid and vapor phases. In the example above, the two phases
(liquid at Patm, vapor at po¼ psat) are both in their stability zone of the phase
diagram, but evaporation can also occur from a metastable liquid into a sub-
saturated vapor through a membrane (see Section 4.3.2). In contrast to evap-
oration, cavitation and boiling correspond to the nucleation of the stable vapor
phase within the metastable liquid, and do not happen in a stable liquid.

4.3 Origins of Negative Pressure
As explained in the Introduction, negative pressure in plants mainly ori-
ginates from dehydration (e.g. evaporation, osmosis). Below, we first explain
the connection between negative pressure and dehydration from a mech-
anical perspective. Then, we describe the driving forces and equilibrium
states involved in dehydration from a thermodynamic perspective. Finally,
we briefly mention other ways negative pressures can be obtained.

4.3.1 Dehydration: Mechanics

Let’s consider liquid water that is enclosed in a cell of volume, Vc, at ambient
pressure Patm. Now, we examine a situation where the cell dehydrates, i.e. loses
water molecules (by an amount of substance Dn), e.g. by transport through the

zThe fact that the density of the liquid, r, is involved in the equation for water vapor is simply
due to the way water potential is defined, i.e. by dividing water potential differences Dm by the
molar volume of the liquid; for water vapor, Dm¼RTln(a)þMgz, where M is the molar mass of
water. Not taking into account the effect of gravity on the water potential of water vapor can
result in the erroneous prediction that one can build a perpetual-motion pumping machine
based on liquid/vapor local equilibrium, i.e. a tall column of liquid water could never be in
equilibrium with the surrounding vapor.
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porous walls. We assume that liquid adhesion to the cell walls is good so that
no cavitation occurs and the liquid remains homogeneous in the process.

If the cell is infinitely rigid (see Figure 4.4a), Vc does not change in the
process, and the cell now contains fewer molecules occupying the same
volume. Necessarily, the average distance between molecules in the liquid
increases; in other words, the liquid gets stretched and its pressure drops:
P¼ PatmþDP, with DPo0. Another way to look at the situation is that the
molecules initially present in the cell (volume, Vc) now occupy a larger vol-
ume, VcþDV, where DV¼ vmDn is the liquid volume occupied by the mol-
ecules removed from the cell. We can evaluate the pressure required to
stretch the liquid by an amount DV using eqn (4.1):

DP¼� 1
wq

DV
V
: (4:5)

Because of the low compressibility of water (wq¼ 0.45 GPa�1; see
Section 4.2.2), removing only a small fraction of the water molecules within
the cell results in massive pressure changes. For example, withdrawing only
0.1% of the molecules (DV/V¼ 0.001) is sufficient to make the pressure drop
from ambient to more than 20 bars of negative pressure, DP¼�2.2 MPa.

In real systems, the cell enclosing the liquid is not infinitely rigid and
deforms under liquid pressure changes. In particular, if P decreases, the cell
tends to contract so that Vc also decreases (see Figure 4.4b). We can quantify
this effect using an effective cell compressibility wc¼ (1/Vc)(@Vc/@P)T; note the
opposite sign in this definition compared to the liquid’s compressibility (see
Section 4.2.2) that allows us to keep all coefficients positive. Kc¼ 1/wc is the
effective bulk modulus of the cell. Now, removing a volume DV¼ vmDn of
liquid water from within the cell results in both contraction of the cell and

Figure 4.4 Mechanics of negative pressure generation by dehydration of a cell con-
taining liquid water. (a) If the confining cell is infinitely rigid, withdrawing
a volume DV of the liquid stretches the liquid by the same amount, which
makes the pressure drop (see eqn (4.5)). (b) If the cell is deformable, the
same process both stretches the liquid and makes the cell shrink. More
liquid volume needs to be removed to produce a similar drop in pressure
(see eqn (4.6)). Red arrows represent the force exerted by the liquid on the
walls; lighter blue color indicates a less dense liquid.
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stretching of the liquid. Using the definitions of wq and wc, it is straight-
forward to show that the corresponding drop in pressure is given by

DP¼� 1
wq þ wc

DV
V

(4:6)

as long as the pressure variations are small with respect to both bulk moduli
(|wqDP|{1,| wcDP|{1). We recall that DV is the liquid volume withdrawn
from the cell, not the change in the cell volume, DVc; DV and DVc are different
in general because of the compressibility of the liquid. Because wc is positive,
it requires more dehydration of the cell (larger DV) to achieve a similar drop
in pressure compared to the case of an infinitely rigid cell discussed previ-
ously, as can be seen by comparing eqn (4.5) and (4.6).

Eqn (4.6) shows the interplay of water compressibility (wq) and cell de-
formability (wc). When dehydration occurs, water expansion and cell con-
traction occur simultaneously. One can have different views on the
generation of negative pressure by dehydration. Some people would prefer to
consider that water leaving the cell induces an elastic strain in the cell wall,
which ‘‘pulls’’ on the liquid and generates negative pressure. Other people
would think of the same process as water leaving the cell that stretches the
inner liquid, resulting in negative pressure that pulls on the cell walls and
makes the cell shrink. However, these are just two point of views on a un-
ique, coupled phenomenon. Note that even with a very stiff cell, a tiny de-
formation of the walls has to occur to maintain equilibrium with the
pressure force exerted by the liquid.

We have assumed a linear response between the pressure and the cell
volume, which is an excellent approximation as long as |DP|{Kc (small
deformations). For larger deformations, one would need to know in more
detail the stress–strain relationship of the cell to quantify deviations to eqn
(4.6). Also, instabilities such as creasing or buckling can occur (some are
visible in Figure 4.2e) and may result in collapse of the structure. To avoid
too large deformations (that reduce the available volume) or collapse,
structures conducting water at negative pressure should be stiff (Kcc|DP|).
In trees (see Figure 4.2a–b), for example, typical negative pressures in xylem
are �1 to �10 MPa, while Kc is in the range 0.1–1 GPa; deformations of wood
under the effect of water negative pressure are thus small but measur-
able.23,24 For cavitation-based spore ejection mechanisms (see Figure 4.2c–d),
however, the structure is much more compliant, which allows the system to
deform significantly and store a large amount of elastic energy when negative
pressure builds up; this stored energy is suddenly released when cavitation
occurs. In these situations, the cell elastic moduli and the negative pressures
are of the same order of magnitude (B10 MPa).8

8For the fern sporangium,2 typical negative pressures of �10 MPa develop, and the cell elastic
modulus is Kc¼ 2B/h where BC300 N/m is the bending modulus of the annulus, and hC40 mm
is the height of the cells. Thus, KcC20 MPa.
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4.3.2 Dehydration: Thermodynamics

In the previous discussion, we have explained how dehydration can generate
negative pressure through the coupled stretching of the liquid and strain of
the enclosing structure that it implies. Now, we discuss the thermodynamic
driving forces for dehydration and the potential associated equilibria.

As discussed in Section 4.2.5, driving forces can be described using water
potential, C. In the same way as a drop of water (Cq¼ 0) that spontaneously
evaporates in a subsaturated vapor (a¼ p/psato1, hence Cvo0) as discussed
in Section 4.2.6, a cell structure containing water, initially at ambient
pressure (Cq¼ 0 if there are no solutes), tends to dehydrate spontaneously if
the membrane permits exchange with air that is subsaturated in water
vapor (see Figure 4.5a). From the mechanical mechanisms described in the
previous section (see Figure 4.4), this dehydration produces a drop in
pressure, which decreases the water potential of the liquid within the cell
(see eqn (4.3)). As dehydration progresses, Cq within the cell becomes more
and more negative (as does the liquid pressure) and gets closer to Cv of the
vapor, so that the driving force for dehydration decreases. An equilibrium
can be reached when Cq¼Cv, or, from eqn (4.3) and (4.4),

DP¼ RT
vm

ln
p

psat

� �
þP (4:7)

Figure 4.5 Thermodynamics of negative pressure originating from dehydration.
(a) Evaporation in a subsaturated vapor dehydrates the cell until the
negative pressure in the cell balances the negative water potential of the
external water vapor (see eqn (4.7)). Equilibrium between the liquid and
vapor at different pressures can be mediated through the formation of
curved liquid–vapor menisci (inset). (b) Dehydration in an osmotic
solution produces the same effect; equilibrium is reached when the
negative pressure in the cell balances the external osmotic pressure
(see text).
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where DP¼ P� Patm, and P is the osmotic pressure associated with potential
solutes present in liquid water. In trees, xylem contains solutes at low con-
centrations, and the associated osmotic pressure is usually neglected.6,15

However, other structures such as a fern leptosporangium can contain
solutes with P in the MPa range;2 in such a situation, as can be seen in
eqn (4.7), the presence of solutes makes the equilibrium pressure at given
external humidity less negative than for pure water.

For pure water, the negative pressure implied by eqn (4.7) is rapidly in-
creasing in magnitude as the relative humidity of the air is decreased below
100%RH (see Table 4.1) so that equilibrium with a subsaturated vapor is a
very efficient way to generate massive negative pressures. With solutes, the
values of liquid pressure indicated in Table 4.1 have to be shifted up by the
amount P (e.g., the equilibrium pressure of a cell containing solutes at P¼ 2
MPa at 92.9%RH would be �8 MPa).

We note that dehydration can also be driven by osmosis instead of evap-
oration. Taking the example of a cell containing pure liquid water immersed
in a solution at ambient pressure (see Figure 4.5b), if the cell membrane is
able to maintain the concentration difference (i.e. excludes the solute),
equilibrium is obtained when a the negative pressure in the inner liquid
balances the osmotic pressure, i.e. DP¼�P. This strategy is sometimes used
to artificially induce negative pressure and cavitation in plant cells or arti-
ficial structures (see e.g. ref. 2, 5, 22 and 25–27). More generally, with solutes
both inside and outside of the cell, DP¼Pin�Pout at equilibrium. The de-
hydration effect still occurs if the membrane only hinders solute transport
instead of being fully permeable, but with a reduced efficiency:
DP¼ s(Pin�Pout), with the reflection coefficient so1.15,22,28 If not actively
maintained, the concentration difference, however, tends to vanish over
time due to solute diffusion, and the osmotic pressure difference becomes
zero. In some sense, osmosis can be seen as less efficient than evaporation
as a driving force to induce negative pressures, because large concentrations
of solutes are required to generate significant osmotic pressures (e.g. 1 mol L�1

of sucrose for PC3 MPa15), while small changes in humidity generate large
negative pressure differences (see Table 4.1).

Of course, the negative pressure described by eqn (4.7) is only reached if
equilibrium can be attained. This means that the membrane separating the
liquid at negative pressure (P0þDP, DPo0) and the air (pressure, P0) must
resist collapse and/or mechanical failure under the pressure difference DP,
but also allow for the coexistence of liquid and air at very different pressures.

Table 4.1 Equilibrium liquid pressure, P¼ PatmþDP, and radius of curvature, r, of
the liquid/vapor interface as a function of water vapor humidity in the
air (%RH¼ p/psat�100), calculated from eqn (4.7)–(4.8) for a temperature
of T¼ 298.15 K.

Air humidity (%RH) 100 99.93 99.2 92.9 83.3 69.4 48.2
Liquid pressure (MPa) 0.1 (¼Patm) 0 �1 �10 �25 �50 �100
Radius of curvature (nm) N 1498 131 14 5.7 2.9 1.4
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One way to achieve the latter is if the membrane is wetted by the liquid and
allows curved liquid–vapor menisci to develop (see Figure 4.5a, inset). As-
suming for simplicity that the menisci are hemispherical caps with the same
curvature 1/r in both directions, they maintain a pressure difference

DP¼�2g/r (4.8)

from the Laplace law. The lower the humidity, the larger the pressure dif-
ference and the larger the curvature of the menisci. Note that the combin-
ation of eqn (4.7) and (4.8) is known as the Kelvin–Laplace equation.
Table 4.1 indicates radii of curvature predicted from the Kelvin–Laplace
equation; in order for the curvature to develop, the constrictions within the
membrane (pore radius rp for a porous medium, typical half mesh size of
the polymer network for a hydrogel, etc.) must be smaller than r, assuming
the medium to be well wetted by water. For less hydrophilic surfaces, the
constrictions must be even smaller (e.g. for a pore, rpor � cosy, where y is
the receding water contact angle on the pore wall).

Of course, meniscus invasion in a complex nanoporous structure cannot
be simply represented by a single constriction size (and the concept of a
meniscus is somewhat debatable in polymer structures), so these estimates
must be taken as order of magnitudes only. However, the values in Table 4.1
indicate that only membranes containing networks with typical dimensions
in the nanometer range are suitable to be able to develop large negative
pressures. Static negative pressures described by eqn (4.7) down to �20 to
�25 MPa could in fact be obtained in artificial systems consisting in large
voids (B10–100 mm in size) separated from air by membranes based on
hydrophilic hydrogels25,29,30 or hydrophilic mesoporous silicon,22,31,32 both
with estimated constrictions below 5 nm.

In fact, in the experiments mentioned in the previous paragraph based on
hydrogels or mesoporous silicon, the mechanism limiting the achievable
negative pressure to �25 MPa was not capillary failure in the membrane but
cavitation of the containing liquid. More generally, the equilibrium described
by eqn (4.7) is metastable when the pressure is negative, because of the
possibility of bubble nucleation by various mechanisms (see Section 4.4). It is
remarkable that as long as the system allows for equilibrium (no mechanical
or capillary failure of the membrane, no cavitation), the equilibrium pre-
dicted by eqn (4.7) does not depend on the details of the membrane itself.

4.3.3 Dehydration: Discussion

The values of negative pressure listed in Table 4.1 could make one think that
trees should routinely endure massive water stresses and cavitation. Indeed,
it is not rare for humidity to fall below 50%RH during the day, which cor-
responds toB�100 MPa of pressure at equilibrium (see Table 4.1), close to
the homogeneous cavitation limit (see Section 4.4). In reality, water within
the xylem is not at equilibrium with the atmosphere, first because the water-
conducting cells are continuously fed with water coming from the roots, and
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also because trees have protection mechanisms that isolate water in the
xylem from the outside when pressure becomes too negative (e.g. closure of
stomata6,15). As a result, the actual negative pressure in the xylem arises from
a balance between water potential in the soil, water potential in the at-
mosphere, and the different resistances to water transport separating the
soil and the atmosphere through the xylem tissue.6,15,16,20 However, the
general idea that dehydration (in this case by transpiration in the leaves) is
the driving force for negative pressure generation remains true; simply the
local water potential (i.e dehydration state) in the xylem is not as severe as
one could expect, due to continuous flow or isolation. Other natural struc-
tures that rely on cavitation for spore ejection (see Figure 4.2) are in more
direct contact with the atmosphere and potentially quickly reach equi-
librium with the local humidity surrounding them. As a result, they require
the humidity to drop below a critical value for their mechanisms to trigger.

4.3.4 Other Origins of Negative Pressure

Although negative pressure in plants originates from dehydration-related
processes in natural conditions, there exist other methods to induce nega-
tive pressure and cavitation. We only give a brief summary here; more details
can be found in other references.19,20,25

a. Traction. This is perhaps the most intuitive way to stretch a liquid, i.e.
by literally pulling on it, for example using the piston in a syringe. Any
air pocket must be carefully removed because the pulling force would
just make the gas expand without pulling on the liquid. As noted by
Huygens in the 17th century, the liquid’s own weight in a vertical tube
can also lead to a tensile state, and two centuries later Reynolds ob-
tained negative pressures of a few atmospheres using this method.19

b. Hydrodynamics. Accelerating a fluid can result in a drop in pressure
(the Venturi effect) sufficiently large to make the pressure negative.
This effect is well known by mechanical engineers, because cavitation
around fast-spinning boat propellers results in damage from the vio-
lent collapse of the bubbles on the blades.33 The order of magnitude of
negative pressure achievable with this technique is typically of a few
bars at maximum, probably due to remaining air bubbles in the fluid
that act as cavitation nuclei.34

c. Centrifugation. Spinning a tube containing a liquid, around an axis
perpendicular to the length of the tube, makes the liquid ‘‘pull on it-
self’’ due to the centrifugal effect, resulting in a gradient of pressure
with the minimum value at the rotation axis. Briggs obtained negative
pressures down to �28 MPa with this technique, which has also been
adapted to study cavitation in xylem by spinning branches.35,36,37

d. Isochoric cooling. Known as the Berthelot method,38 this technique
consists in cooling down a liquid trapped in a pocket within a solid: the
liquid would naturally contract, but if there is good adhesion with the
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walls, the liquid is forced to remain at a volume larger than at equi-
librium and gets stretched. After cavitation, the pocket of liquid can be
‘‘reset’’ by heating up the system sufficiently so that the liquid expands
again and occupies the whole volume. The rare experiments that
reached what seems to be cavitation by homogeneous nucleation at
�120 to �140 MPa used the Berthelot technique with micrometric
inclusions in quartz.39,40

e. Acoustic waves. Acoustic waves are an oscillation of pressure around
ambient pressure. If the amplitude of the wave is large enough (e.g. due
to strong focalization in a liquid), the low-pressure part of the oscil-
lation cycle can be below P¼ 0. Despite the fact that the probed volume
and timescales are small and that the wave can be focalized away from
any surface, even careful experiments do not seem to be able to reach
pressures below �30 MPa.19,41 One experiment using reflected shock
waves reports pressures down to �60 MPa, albeit with a more indirect
way of estimating the pressure, based on comparison with simulations
of shockwave propagation.42

4.4 Cavitation Mechanisms
Although water is theoretically able to withstand B�200 MPa of pressure
before spontaneously breaking apart (at the spinodal limit; see Sec-
tion 4.2.2), cavitation always occurs at more moderate values of negative
pressure, so that the spinodal is never reached in practice. The pressure at
which cavitation happens, Pcav, strongly depends on the microscopic
mechanism leading to the formation of a bubble. Below, we briefly introduce
some commonly discussed cavitation mechanisms.

4.4.1 Homogeneous Nucleation

Cavitation by homogeneous nucleation (see Figure 4.6a) corresponds to the
spontaneous nucleation of a vapor bubble in the liquid from thermal fluc-
tuations. Although this process is obviously stochastic, the probability of
cavitation is very nonlinear as a function of pressure and varies very quickly
around a typical value of Pcav. Theoretical estimates for Pcav are usually based
on classical nucleation theory (CNT)17,43 and are typically in the range �120
to �150 MPa at ambient temperatures, depending on considered volumes,
timescales and refinements of CNT.19,40,44 In section IB, we present an ex-
tended version of CNT that takes into account finite volume and the effect of
compressibility (of the liquid and of the containing cell).

The limit PcavB�120 to �150 MPa is at more moderate negative pressures
than the spinodal (B�150 to �200 MPa20,21) and can be seen as the ultimate
negative pressure that one can hope to reach in water, as even thermal
fluctuations are sufficient to produce cavitation at that point. Reaching this
limit experimentally is difficult, as one must eliminate all other mechanisms
that can trigger nucleation at less negative pressures (see examples below).
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The rare experiments that have reached such extreme negative pressures
have used thermal cycling in water pockets trapped in quartz inclusions.39,40

Many other methods (including acoustic waves focused in a pure liquid far
from any walls) seem to find a cavitation threshold at �20 to �30 MPa, even
with careful purification and preparation; there is no clear understanding on
the reason of such a difference between these experiments and those with
quartz inclusions.20

The other mechanisms discussed below can be all considered as hetero-
geneous mechanisms, by opposition to the homogeneous nucleation mech-
anism described here.

4.4.2 Surface-aided Nucleation

Homogeneous nucleation is difficult because creating a liquid–vapor interface
costs energy. Any solid surface that the liquid does not completely wet (i.e.
contact angle, y40) reduces this energetic cost by enabling pathways of nu-
cleation where the bubble is a truncated sphere (see Figure 4.6b). This effect
can easily be incorporated into CNT;19,43 the predicted Pcav depends on y but
only deviates significantly from that of homogeneous nucleation when the
surface is hydrophobic (y4901). For example, a contact angle greater than 1501
would be required to predict Pcav¼�20 MPa.25 Globally, any cavitation pres-
sure can be obtained between the homogeneous nucleation value (�120 to
�150 MPa) and P¼ Psat by varying the contact angle between 0 and 1801. Non-
flat surfaces (e.g. crevices or tips) can also modify the cavitation pressure.45

Fundamentally, the surface-aided mechanism is not very different from
that of homogeneous nucleation in the sense that it still involves a vapor
bubble that is spontaneously nucleated in the liquid, but with a reduction in

Figure 4.6 Examples of cavitation mechanisms. (a) Homogeneous nucleation.
(b) Surface-aided nucleation (left: hydrophilic surface; right: hydrophobic
surface). (c) Cavitation from a floating gas bubble (black elements repre-
sent potential organic molecules stabilizing the surface of the bubble).
(d) Cavitation from air trapped in a crevice. (e) Cavitation from meniscus
aspiration through a pore. Black arrows represent motion, dashed areas
represent solids. Bubbles contain gas (water vapor and/or air).
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energy cost due to a surface. Cavitation through this mechanism can be seen
as a loss of adhesion between the liquids and the surface. The other mech-
anisms discussed below, however, are fundamentally different because they
involve a pre-existing germ; the liquid–vapor interface already exists and is
simply expanded when cavitation occurs.

4.4.3 Seeded Cavitation

Here we discuss several cavitation mechanisms that involve pre-existing
germs, i.e. microscopic bubbles that can contain gas (typically, air) or water
vapor, which are stable at moderate negative pressures but become unstable
at some critical pressure value Pcav, where they expand into a macroscopic
bubble, i.e. cavitation.

For a gas bubble in a liquid, Pcav¼ Psat –4g/3R, where R is the radius of the
bubble,** which is known as the Blake threshold. The cavitation pressure of a
liquid containing bubbles is thus dictated by the largest bubble it contains.

It is worth noting, however, that a bubble containing gas that is soluble in
the surrounding liquid is never stable and spontaneously dissolves due to
the combined effect of surface tension and diffusion.18,47 Air bubbles dis-
solve quickly (e.g.B1 minute for an initial radius ofB10 mm) so in the context
of plants where negative pressures last for hours, it is difficult to imagine
situations where air bubbles would trigger cavitation before having com-
pletely dissolved. Gas germs thus have to be stabilized against dissolution in
some way.

One way is for the bubble to have an organic coating (see Figure 4.6c) that
blocks diffusion and/or reduce surface tension. Blake’s threshold is sup-
posed to still be a good estimate of Pcav in this situation.34,48 Another sta-
bilizing mechanism is that of air trapped in a crevice (see Figure 4.6d): with
some conditions on geometry and surface wettability, such a bubble can be
stable and gets ‘‘extracted’’ from the crevice if the pressure gets too low in
the liquid, resulting in cavitation.30,49–51 Even with a conical crevice, there
are many cases to consider, but the result is that, again, any cavitation
pressure between Psat and the homogeneous nucleation threshold can be
obtained by varying the crevice size, angle, gas content and wettability.

A related mechanism is that of a pore separating the liquid at negative
pressure from an air-filled (or vapor-filled) space (see Figure 4.6e). The
situation becomes unstable if the pressure difference DP¼ P� Pgas falls
below a critical value DPcav, which is set by the maximum magnitude of the
Laplace pressure that the geometry can allow: for a cylindrical pore of radius
rp, DPcav¼�2gcosy/rp.yy This simple estimate can be adapted for more

**Obviously, the radius of the bubble depends on the pressure in the surrounding liquid. Here,
the radius to consider is the one when P¼ Pcav; solving for Pcav requires using the equilibrium
condition given by the Laplace law.18,46

yyFor a surface that exhibits contact angle hysteresis, y would represent the receding contact
angle in this situation.
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realistic pore geometries, e.g. for pit membranes in xylem, with the inter-
esting conclusion that DPcav not only depends on the pore size distribution
but also strongly on the thickness of the membrane.52 Nevertheless, the
simple equation for a cylindrical pore allows us to illustrate the general idea
that cavitation occurs at more negative pressures for smaller and more
wettable pores. This mechanism is often referred to as air seeding in the
plant science literature.

Because DP can also be lowered by increasing Pgas without changing the
liquid pressure P, air seeding can be triggered by pressurizing the gas phase
instead of putting the liquid under tension. In fact, external air pressuriza-
tion is one of the popular methods used by plant scientists to estimate
vulnerability of xylem to cavitation, although it can lead to various arti-
facts.37 One could argue that air seeding is not a true cavitation mechanism,
because it does not require the liquid to be thermodynamically metastable
(e.g. in the situation of air pressurization described previously). However, in
natural situations the gas pressure is not artificially changed, and the pore
sizes (e.g. in xylem pits) are sufficiently small (sub-micron) to allow for liquid
pressures lower than Psat (i.e. thermodynamically metastable) to develop in
the liquid. In such situations, the formation of a bubble by air seeding falls
under our definition of cavitation, as the expansion of the bubble makes the
liquid relax from a metastable state to a stable state.

4.4.4 Discussion

From the description of cavitation mechanisms above, we can extract the
following conclusions:

� The most negative pressure achievable in water at ambient temperature
is set by homogeneous nucleation and is larger than 1000 atmospheres
(P(hom)

cav ¼�120 to �150 MPa) in magnitude.
� �20 to �30 MPa seems to be a more practical lower limit, while plants

typically develop only �1 to �10 MPa (see ref. 7–9).
� Heterogeneous mechanisms can set the cavitation pressure of a system

to any value between Psat and P(hom)
cav .

� Resistance to cavitation is better if defects in the system (pores or
crevices in the walls, hydrophobic patches, floating bubbles, etc.) are
smaller (and/or more wettable when applicable).

This last point is illustrated by the fact that cavitation pressure scales as
g/L, where L is a typical size (e.g. bubble radius for Blake’s threshold, pore
size for air seeding, critical bubble radius for homogeneous nucleation, see
Section 4.5.1).

It is usually difficult to pinpoint a specific cavitation mechanism, but
some mechanisms can be ruled out by various tests. For example, cavitation
seeded by air trapped in crevices can be modified or even suppressed by pre-
pressurization of the system. Examples can be found of such tests in
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artificial, xylem-like systems based on hydrogels30 or porous silicon,32 with a
careful discussion of potential cavitation mechanisms.

Other cavitation mechanisms may exist. For example, recent results show
that a negative pressure of �10 MPa is sufficient to tear apart lipid bilayers,
which could thus be responsible for cavitation by loss of adhesion within the
bilayer due to the tensile force of water acting on it.53 More generally, there
has been a growing interest in understanding the role of surfactants present
in sap or in cell walls on cavitation in plants.54,55

Generally, the size separation between the microscopic germ responsible
for cavitation and the final cavitation bubble is so large that the exact
cavitation mechanism has little impact on the dynamics of the cavitation
bubble after nucleation. As a result, the dynamical phenomena (bubble
dynamics, cavitation propagation, etc.) presented in the end of this chapter
are mostly insensitive to the microscopic mechanism at the origin of the
cavitation bubble.

4.5 Confined Cavitation Theory
Here, we present a single theoretical framework that will allow us to discuss
both thermodynamic aspects and dynamical aspects of negative pressure
and cavitation in closed environments. Mainly, it consists in an extension of
CNT17,18,19,43 to take into account the compressibility of the liquid and the
elasticity of the containing cell.25,46 As we have shown in Section 4.3, these
two effects are important in the generation of negative pressure. We will
show below that they also play a significant role for the equilibrium states
and dynamics of cavitation bubbles.

The idea is to evaluate the minimum work of formation of a bubble in a
liquid at negative pressure in a closed, elastic container (see Figure 4.7).
The minimum work identifies with the Helmholtz free energy difference, DF
between an initial state without bubble and with the liquid at negative
pressure, P0o0 (see Figure 4.7, state A) and a state with a bubble of volume
V and surface area A (states B�D). DF also corresponds to the potential
energy of the system and dictates the driving forces that shape the
dynamics.

We consider a bubble forming within a liquid, i.e. homogeneous nu-
cleation (see Section 4.4 for a discussion of other mechanisms). We also
assume that the liquid does not contain dissolved air, or that if it does,
transport of air by diffusion into the bubble is negligible during the
timescales of cavitation. As a result, the saturation vapor pressure of
interest is Psat (but using psat would result in negligible differences anyway;
see Section 4.2.5). It can be shown (see Appendix B for a detailed deriv-
ation) that in this situation,

DF¼ gAþ ðP0 � PsatÞVþ
1
2

1
V0ðwq þ wcÞ

V 2 (4:9)
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where V0 is the initial container volume (equivalently, initial liquid volume),
wq is the isothermal compressibility of liquid water introduced previously,
and wc the effective compressibility of the container (see Section 4.3.1).

In eqn (4.9), the first term represents the energetic cost of creating a li-
quid� vapor interface (surface tension, g, see Section 4.2.1), the second term
is associated with the initial driving force associated with the pressure in the
liquid, and the third term describes how this driving force changes as a
function of bubble size due to compressibility effects. Indeed, eqn (4.9) as-
sumes that during the timescales of interest (Bms, see below), no significant
transport happens through the walls of the containing cell, so that the
number of water molecules in the cell remains constant. As a result, the only
way to make the bubble grow is by compressing the surrounding liquid and/
or inflating the containing cell, hence the wqþ wc factor in the expression.
The compression of the liquid as the bubble grows results in an increase in
pressure in the liquid (see eqn 4.32): the negative pressure progressively

Figure 4.7 Cavitation in a closed container (cell), assuming a spherical bubble and
an effective container compressibility of wc¼ 1 GPa�1. State A corres-
ponds to the homogeneous liquid at negative pressure (P0o0). In state B,
a bubble has overcome the critical nucleation radius R*: the effective
pressure Peff, representing the net driving force applied on the bubble
(red arrows), is negative and tends to make the bubble grow. State C
corresponds to equilibrium (Peff¼ 0, R¼Rb). In state C, the bubble is
larger than its equilibrium size and a net inwards force (Peff) tends to
make it go back to its equilibrium size. Oscillations between states B and
D around equilibrium are possible due to inertia in the system. In the
schematics, darker shades of blue indicate larger pressure and larger
density in the liquid. In the graphs, the continuous, blue line corres-
ponds to an initial negative pressure of P0¼�10 MPa while the dashed,
red curve corresponds to P0¼�20 MPa. The two graphs represent the
same DF(R) function (eqn (4.9)) on different ranges of bubble size. Notice
the large scale separation between them.
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vanishes as a result. The assumption of short timescales also means that the
value of wc to consider might be different than in quasi-static situations, e.g.
for poroelastic systems.56 Generally, wc represents here the pressure/volume
relation of the containing cell at the current conditions of dehydration in the
medium, and in a no-flow situation (constant water content in the cell).

Eqn (4.9) is applicable for any bubble shape. In the following, we assume
the bubble to be spherical, so that A¼ 4pR2 and V¼ 4pR3/3, where R is the
bubble radius. The quantity

Peff ¼
dDF
dV
¼ 2g

R
þ ðP0 � PsatÞ þ

1
wq þ wc

V
V0

(4:10)

is an effective pressure that represents the driving force for the bubble
dynamics. If Peffo0, the system is in tension and the bubble tends to expand
(Figure 4.7, state B). Equilibrium occurs when Peff¼ 0 (Figure 4.7, state C). If
the bubble is larger than equilibrium (Figure 4.7, state D), the driving force
reverses and tends to make the bubble shrink back to equilibrium.

Figure 4.7 presents the shape of DF for two different initial negative
pressures, using typical values wc¼ 1 GPa�1 and V0¼ (100 mm3) for the
containing cell, and tabulated values for the properties of water at 25 1C
(g¼ 0.072 N m�1, Psat¼ 3170 Pa, wq¼ 0.45 GPa�1). In the next sub-section, we
discuss the main features of the DF potential energy landscape and their
consequences.

4.5.1 Critical Radius, Energy Barrier

For small radii in the nanometer range, DF presents a maximum at the
critical radius, R* (see Figure 4.7, left). Below R*, Peff40 and the bubble tends
to collapse. Only when R4R* does the negative pressure ‘‘win’’ over surface
tension (Peffo0), making the bubble expand and resulting in cavitation.
Thus, DF*¼DF(R*) corresponds to the energy barrier for nucleation. This
energy barrier decreases when pressure becomes more negative, making
nucleation more likely.

With typical container sizes (dimensions 0.01–1 mm and above) for plant
cells, the compressibility contribution (third terms in eqn (4.9)–(4.10)) can
be shown to be negligible around the critical radius, so that DF is well
approximated by the first two terms, which correspond to those usually
considered in CNT for homogeneous nucleation.19 In this situation, the
critical radius and energy barrier are easily calculated from eqn (4.9)–
(4.10), neglecting the last term and requiring Peff¼ 0; this calculation yields
R*¼ 2g/(Psat� P0) and DF*¼ 4pR*2g/3.

In sub-micron container sizes, however, the surface tension and com-
pressibility terms can become of the same order of magnitude around R*,
with the surprising consequence that a liquid at negative pressure confined
at these dimensions can become absolutely stable instead of metastable.25,46

142 Chapter 4



The classical approach of CNT is to compare the energy barrier DF* to
thermal fluctuations (kbT) and compute the probability of passing the energy
barrier given some attempt frequency. Doing so, one estimates that the
probability of cavitation is virtually zero unless pressure reaches values in the
�120 to �150 MPa range.19,40,44 These values depend only weakly on total
volume and observation timescales.

The expression (eqn (4.9)) of DF can be modified to describe cavitation
seeded by gas germs, by adding a term � 3NkbTlnV; in this case, nucleation
occurs from a gas bubble containing N insoluble gas molecules and a con-
fined version of Blake’s threshold (see Section 4.4) can be obtained.46 More
generally, the shape of DF, the values of the critical radius and energy barrier
and the associated typical cavitation pressure depend greatly on the micro-
scopic mechanism of cavitation (see Section 4.4). The shape of the potential
DF(R) for radii much larger than the critical radius, however, does not de-
pend significantly on the cavitation mechanism. In the rest of this chapter,
we focus on this large-bubble regime, which describes the formation of a
macroscopic cavitation bubble once the energy barrier is overcome.

4.5.2 Equilibrium Bubble

At large bubble sizes, DF presents a minimum at a point corresponding to
the equilibrium bubble (see Figure 4.7, state C). We define the equilibrium
bubble volume as Vb and corresponding radius as Rb. Once the energy
barrier of nucleation is overcome, the expanding cavitation bubble will
tend towards Vb. The equilibrium size of the bubble is found by solving
dDF/dV¼ 0, i.e. Peff¼ 0. Using eqn (4.10),

Vb¼ V0 wq þ wcð Þ Psat � P0 �
2g
Rb

� �
: (4:11)

In most situations relevant to this chapter (real and artificial plant-like
systems), Psat and the capillary pressure 2g/Rb are negligible in magnitude
compared to P0, so that

VbCV0(wqþ wc)|P0| (4.12)

to excellent approximation. Eqn (4.11)–(4.12) express mathematically the
fact that the volume occupied by the bubble comes from the space liberated
by the combined contraction of the liquid and expansion of the cell, due to a
change of pressure from P0o0 to PC0. Larger bubble sizes are obtained if
the initial negative pressure is larger in magnitude (P0 more negative), if the
cell is more deformable (higher wc), or if the cell’s volume, V0, is larger.

We note that with the typical parameters that we have used for the con-
fining cell’s volume and elasticity, the size of the equilibrium bubble (Rb) is
several orders of magnitude larger than the size of the critical bubble (R*), as
can be seen in Figure 4.7. Consequently, the critical radius and energy
barrier are not visible on a graph of DF at the length scales and energy scales
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of the equilibrium bubble (see Figure 4.7, right). This illustrates the fact that
the microscopic mechanism for nucleation is irrelevant for the dynamics of
formation of the macroscopic bubble, as discussed earlier.

4.5.3 Inertial Oscillations

Around the equilibrium bubble, DF has the shape of a potential well. When a
cavitation bubble appears, inertia can make the system oscillate around the
equilibrium position at the bottom of the well (see Figure 4.7, right, arrows).
This results in radial oscillations of the bubble.

a. Effective stiffness. In order to evaluate the oscillation dynamics, it is
useful to approximate the system as a harmonic oscillator around its equi-
librium point, i.e. use a quadratic expansion of DF(R)around R¼Rb:
DF(R)CDF(Rb)þ k(R�Rb)2/2, where k¼ (d2DF/dR2)R¼Rb

is the effective stiffness
of the system. Using the definitions Peff¼dDF/dV and A¼dV/dR, combined
with the equilibrium condition Peff(Rb)¼ 0, k can be expressed as

k¼ Ab
dPeff

dR

� �
R¼Rb

(4:13)

where Ab is the bubble surface area at equilibrium. Using eqn (4.10),

k¼ A2
b

V0ðwq þ wcÞ
� 8pg (4:14)

b. Effective mass. The oscillation dynamics is set by the interplay of the
system’s stiffness and inertia. In general, inertia (i.e., the kinetic energy, Ek)
is complicated to evaluate because it depends on the details of the velocity
field in the liquid and in the walls of the containing cell. However, the vel-
ocity field typically decreases rapidly away from the bubble surface, so that
the dominant contribution to the kinetic energy usually comes from the
fluid displaced close to the bubble. As a first approximation, one can thus
assume that the kinetic energy is that of a bubble oscillating in an un-
bounded fluid: Ek¼ (1/2)m(dR/dt)2, where m¼ 4pRb

3 r is the effective mass of
the system.18 We recall that r is the density of the liquid. During the oscil-
lation, the liquid is successively compressed and stretched, so that its
density changes, but these variations are small and can be ignored as a first
approximation. The main correction to the effective mass comes from the
effect of the actual velocity field in the liquid compared to an unbounded
situation, and to the potential contribution of the other parts of the system
(e.g. cell walls and outside medium) to the kinetic energy. These different
effects can be bundled into a corrective factor f so that

m¼ 4pR3
brf (4.15)

where f is a dimensionless factor describing deviations to the unbounded
case (f ¼ 1 for a bubble in an infinite liquid). In the ideal situation where
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the cell containing the liquid is a spherical void in a solid with an effective
compressibility, wc and density, rs that are comparable to those of the liquid
(wq,r) and the bubble is at the center of the cell, fC1. However, for an in-
finitely stiff cell that imposes a strict zero-velocity boundary condition at the
cell wall, the effective mass is significantly reduced compared to eqn (4.15),
e.g. fC0.65 for a bubble of radius only one-fifth of the container’s radius.46

c. Oscillation frequency. With the effective stiffness and effective mass es-
tablished above, the system is analogous to a mass/spring system, and its
natural angular oscillation frequency is given by o¼ 2pf ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
. For sim-

plicity, we assume in the following that the surface tension contribution to
the effective stiffness (�8pg) is small compared to that of the system’s
compressibility; this is usually a good approximation, but it has to be
evaluated depending on the system’s parameters.31,46 Using eqn (4.14)–
(4.15),

o ’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pRb

ðwq þ wcÞrV0

s
: (4:16)

From eqn (4.11), we also know the bubble size Vb¼ 4pRb
3 /3 as a function of

the initial negative pressure prior to cavitation and we can rewrite (still
neglecting surface tension):

o ’ 3
rf

� �1=2 4p
3V0ðwq þ wcÞ

� �1=3

Psat � P0ð Þ1=6; (4:17)

Interestingly, eqn (4.17) indicates that the natural oscillation frequency of a
cavitation bubble depends very weakly on the initial pressure prior to cavi-
tation (power 1/6). The main parameters governing the oscillation frequency
are the cell’s volume (V0), and the system’s effective compressibility
(w¼ wqþ wc). For the quite different geometry of a cylindrical bubble at the
end of a long cylindrical tube (length L), it can also be shown with a similar
approach that o ’ L�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ðrwÞ

p
.25

Predictions similar to eqn (4.16)–(4.17) can be obtained from estimations
of the dispersion relation of acoustic waves related to the oscillation of the
bubble within the containing cell,25,27,46,57 and agree with experimental
results27,31,46,58 and simulations.59 While these acoustic methods are re-
stricted to small oscillations around equilibrium, the full nonlinear dy-
namics of the bubble (Rayleigh–Plesset-like equation) can also be directly
calculated from the expression of DF(R) and of the kinetic energy, e.g. using
Euler–Lagrange equations.25,46 From this Rayleigh–Plesset-like equation it
is possible to show that the initial expansion velocity of the bubble when it
appears is

dR
dt

� �
0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðPsat � P0Þ

3r

s
(4:18)
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which is in fact a general result for the rate of expansion of a bubble in a
liquid at pressure, P0.18 Eqn (4.18) can be used to estimate the negative
pressure in the liquid prior to cavitation by measuring the initial rate of
growth of the cavitation bubble.25,46,60

The radial vibration of the cavitation bubble emits acoustic waves in the
medium, and analysis of the frequency of the acoustic signals in relation to
the theoretical predictions (e.g. eqn (4.16)–(4.17)) potentially allows ob-
servers to obtain information about the local properties (cell volume, elas-
ticity) of the system. While this idea works well in artificial structures,25,27,31

it is less straightforward to implement in a tree, because of the complexity of
wave propagation in wood.61

In fact, the acoustic emission related to the formation of a cavitation
bubble in a liquid enclosed in a stiff container is so strong that it accounts
for the majority of the dissipation of the energy initially contained in the
stretched liquid (and elastically deformed container) prior to cavitation.25,46

This effect contrasts with the case of unconfined bubbles, for which
damping usually comes from viscous or thermal effects.18,62 This strong
dissipation results in a very quick damping of the radial vibrations, which
stop after just a few oscillations; see Section 4.6.

4.6 Cavitation Bubble Dynamics
We now illustrate the theoretical concepts introduced in the previous sec-
tions with experimental results on the dynamics of cavitation bubbles ap-
pearing in a liquid at negative pressure within an enclosed space. As we will
show, this dynamics is rich and spans many orders of magnitude of time-
scales, from sub-microseconds to minutes.

The discussion in this section is based on a series of experiments using
artificial systems that mimic some essential features of cavitation in
plants.25,31,58 The samples (see Figure 4.8, experimental system) can be seen
as an artificial cells, which consists of spherical voids filled with water, en-
closed in a hydrogel (pHEMA). Dehydration of the cells by diffusion of water
through the hydrogel results in negative pressure (see Section 4.3.1), and is
driven by evaporation (see Section 4.3.2). Cavitation occurs spontaneously in
the liquid when PC�20 MPa; this value is estimated by equilibrating the
system with air at different relative humidities and by using eqn (4.7) to
estimate the corresponding pressure in the liquid.25,29,30 Cavitation can also
be triggered at slightly higher pressures by using a laser pulse (for strobe
photography measurements, see Section 4.6.1). The hydrogel is stiff enough
to resist collapse upon the development of negative pressure in the liquid: its
effective compressibility is wc¼ 1 GPa�1, comparable to that of xylem (see
discussion in Section 4.3.1). The initial development of such synthetic xylem
systems was made by Wheeler and Stroock;29,30 in particular, we refer the
reader to their optimization of the mechanical properties of the gel to avoid
collapse29 and to their thorough discussion of possible cavitation mech-
anisms with respect to those described in Section 4.4 here.30
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Other experiments similar to those presented here have been reported in
the literature, for example with cubic cells and osmosis-driven de-
hydration,27 or with spherical cells in a much softer material, PDMS
(wcB1 MPa�1).60 In this latter case, the cell shrinks dramatically during the
development of negative pressure, however the nonlinear elasticity of PDMS

Figure 4.8 Cavitation bubble dynamics in an artificial cell (spherical void in a
polymer hydrogel). (a) Nucleation dynamics reconstructed from multiple
laser strobe photography experiments31 (time is normalized by the
oscillation period; see (b)). (b) Inertial oscillations measured by light
scattering (extinction of transmitted light), and corresponding frequency
as a function of void size.31 (c) High-speed camera recordings of the
evolution of the bubble shape.31 (d) Time-lapse camera recording of the
final growth of the bubble and emptying of the void, from a side view.25
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and the fact that cavitation occurs at a negative pressure of much lower
magnitude (PcavB�1 MPa) allows the system to avoid complete collapse.

Below, we discuss the different stages of formation of a cavitation bubble
in the spherical, hydrogel-based artificial cells (see Figure 4.8).

4.6.1 Nucleation

Laser strobe photography experiments consist of triggering nucleation in the
metastable liquid by a first laser pulse, then illuminating the system with a
second pulse separated from the first one by 50 to 500 ns. Repeating
the process several times enables an image reconstruction of the birth of
the cavitation bubble (see Figure 4.8a), revealing an ultra-fast expansion.
Using eqn (4.18), one can show that the rate of expansion of the bubble,
dR/dt¼ 125
 20 m s�125 is consistent with the cavitation pressure of�20 MPa
estimated from humidity equilibration experiments (see above).

4.6.2 Oscillations

After the initial expansion, the bubble starts to shrink again (see Figure 4.8a,
last three frames), because the bubble has overshot its equilibrium position
due to inertia (see Section 4.5): this corresponds to the onset of oscillations.
Light extinction experiments reveal oscillations with frequencies f ¼ o/(2p)
in the MHz range (see Figure 4.8b, left). This signal corresponds to radial
oscillations of the bubble, which are quickly damped due to acoustic radi-
ation (see Section 4.5.3). The frequency decreases as the size of the cell is
increased (see Figure 4.8b, right), in excellent agreement with theoretical
predictions (eqn (4.17), red line in Figure 4.8b, right). This frequency also
depends on the compressibility of water and the elasticity of the cell, but
only weakly on the cavitation pressure (see Section 4.5.3). Because of
acoustic radiation, these oscillations can also be detected with a high-
frequency hydrophone.1,25,27

4.6.3 Shape Evolution

A high-speed camera at half a million frames per second cannot resolve the
oscillations, which result in image blur (see Figure 4.8c, second frame), but
reveals a rich, slower shape-related dynamics that follows the oscillations.
The images suggest the evolution of the bubble into a toroidal shape (see
Figure 4.8c, third frame) that destabilizes into several bubbles, which col-
lapse back into a single bubble eventually in a form of quick ripening pro-
cess (see Figure 8c, frames 4 to 9). This peculiar dynamics is thought to arise
from a combination of high-speed jets (creating the toroidal bubble63) and a
Rayleigh-Plateau instability (fragmenting the toroidal bubble31), but is not
fully understood. Eventually, the bubble returns to a spherical shape, while
quickly moving towards the center of the cell (orange arrow); the magnitude
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and scaling (with bubble size) of this translation dynamics is consistent with
a capillary effect driven by surface tension.25,31

4.6.4 Temporary Equilibrium

After the fast dynamics described above, the bubble relaxes to its equi-
librium shape and size (see Figure 4.8, top right micrograph). The equi-
librium bubble volume is proportional to the cell volume (see eqn (4.11)),
and is set by the elastic relaxation of both the liquid and the container (see
Section 4.5.2).

It is worth noting that the whole process of formation of the equilibrium
bubble has a duration on the order of 10 ms and thus requires techniques
with very large frame rates to capture it. A regular camera (or the naked eye)
would just observe a spherical bubble suddenly appearing, floating in the
bulk of the liquid, making the observer think of a homogeneous nucleation
process. However, high-speed recordings such as those of Figure 4.8c
strongly suggest a heterogeneous process starting on the solid walls.25,31

The equilibrium described by the theory in Section 4.5 assumes that the
number of water molecules in the containing cell remains constant. How-
ever, the walls (here, the hydrogel) are permeable to water, and eventually an
outwards flow occurs, because the driving force for dehydration (evaporation
or osmosis) is still present. In other words, there is a water potential im-
balance (see Section 4.2.5) between water inside the cell, which has relaxed
back to CC0 after cavitation, and the surrounding medium (Co0). The
initial equilibrium at volume Vb is thus only temporary.

4.6.5 Emptying, Bubble Growth

After cavitation, the surrounding, dehydrated medium tends to ‘‘suck out’‘
the liquid remaining in the cell (see previous paragraph), causing bubble
growth and eventually resulting in complete emptying of the cell (see
Figure 4.8c); during this process the bubble tends to stay at the top of the cell
due to buoyancy.

The timescales of emptying strongly depend on the volume of the cell, and
of the transport properties and geometry of the surrounding medium. For
experiments with hydrogels or synthetic xylem based on porous silicon (see
Section 4.7), the emptying time, tempt, is on the order of minutes, and can be
predicted based on the permeability and poroelastic constants of the ma-
terial.26,58 In real xylem, values between tens of milliseconds and tens of
minutes are predicted, depending on the type of tree.64 All these estimates
are many orders of magnitude slower than the initial dynamics of the
cavitation bubble leading to temporary equilibrium (see Section 4.6.4), so
that the assumption used in Section 4.5 (i.e., considering that the number of
water molecules stays constant in the cell during nucleation and bubble
oscillations), is justified.
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4.6.6 Discussion

Cavitation bubble dynamics in closed, cell-like environments displays rich
features with timescales spanning from sub-microsecond to minutes for a
single bubble (see Figure 4.8). In the context of plants, some of these features
are potentially interesting. For example, the clear oscillatory signature could
help analyze acoustic signals measured on dehydrating plants. Also, cavi-
tation close to surfaces (e.g. boat propellers) is usually associated with
damage, due to strong, focused jets, shockwaves, etc. when the bubble col-
lapses on itself in the vicinity of the surface.18 We may hypothesize that such
damaging phenomena are not present in plants, because cavitation bubbles,
rather than collapsing, tend to grow and oscillate around a finite size. One
way to explain this difference is that bubbles in plants appear in a tissue that
is dehydrated and under static negative pressure, while bubbles close to
propellers appear due to a very transient metastable state due to flow, and
tend to collapse back completely due to the positive pressure of the stagnant,
surrounding fluid. Another noteworthy remark is that the complex bubble
dynamics makes it challenging to know the exact location where cavitation
was initiated. Indeed, because the bubble oscillates quickly and is then
ejected from the walls within microseconds, erroneous conclusions on the
initial bubble position can be easily drawn when not recording the dynamics
with very large frame rates.

It has to be noted that the conclusions above are based on experiments in
model systems with spherical geometry. It is not well known yet how bubble
dynamics changes when the shape differs from this ideal situation. Cubic
cells have shown a quasi-identical behavior to spherical cells in terms of the
oscillatory dynamics,27 but it would be useful to investigate much more
elongated structures such as those found in xylem. From experiments in
microfluidics with open channels,65 one could expect rich shape dynamics
driven by the geometry of the confining cell, potentially very different from
the spherical case. The last stage of bubble dynamics (slow growth due to cell
emptying, see Figure 4.8), however, probably depends less on the exact shape
of the cells and more on the global transport properties in the whole tissue.
This expansion stage has important consequences for the general dynamics
of propagation in multi-cell structures, as we will explain in the next section.

4.7 Propagation of Cavitation
So far we have explored the birth and growth of a cavitation bubble in a
single cell. Plant tissues contain many cells connected to one another and
the way bubbles from one cell propagate (or not) to other cells has important
consequences. In the fern leptosporangium (see Figure 4.2c), the ejection
mechanism requires cavitation bubbles to appear simultaneously in a
maximum number of cells in the structure; it is thus favorable in such a
situation to have a mechanism that allows fast propagation of cavitation
through the tissue. On the contrary, cavitation is detrimental in xylem
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because it results in embolism; there, propagation is unfavorable, and
indeed observations in xylem show that cavitation occurs through discrete
events (see Figure 4.2a–b). In Sections 4.7.1 and 4.7.2 we will discuss phe-
nomena that either trigger (positive interaction) or suppress (negative
interaction) cavitation in neighboring cells. Surprisingly, both effects can
result in bursts of cavitation events, but for different reasons and on dif-
ferent timescales.

4.7.1 Triggered Cavitation: Positive Interactions

Simultaneous cavitation in neighboring cells has been observed in the fern
leptosporangium (see Figure 4.2c) and also in artificial, hydrogel-based
biomimetic systems, either due to spontaneous, neighbor-to-neighbor
propagation66 or due to an externally induced shockwave that travels
through all cells.25 In this last situation, it is straightforward to understand
the process: all cells initially contain liquid at negative pressure, and the
shockwave passing through the liquid provides a short burst of energy that is
sufficient to overcome the energy barrier of nucleation in the metastable
liquid. In the first case where simulataneous cavitation is spontaneous, there
is no external signal triggering cavitation, but the disturbance associated
with the stochastic nucleation of a cavitation bubble in any of the cells can
be sufficient to trigger nucleation in neighboring cells (see Figure 4.9a).
Cavitation can then propagate from cell to cell in a chain-reaction fashion.
While not much is known about the conditions (cell-to-cell separation, wall
stiffness, etc.) required for cavitation to propagate in this manner, theore-
tical investigations have confirmed that cell-to-cell propagation is possible
due to acoustic coupling between neighboring cells.67,68 Interestingly, the
timescales of propagation are predicted to be strongly linked to the oscil-
lation dynamics of the cavitation bubble: the strongest probability of trig-
gering cavitation in a neighboring cell occurs around the collapse phase
after 1 cycle of oscillation. Since oscillation frequencies are typically in
the MHz range (see Section 4.6), neighbor-to-neighbor triggering should be
almost instantaneous, which is consistent with experimental obser-
vations.10,66 More experimental and modeling investigations are necessary to
characterize these propagation phenomena.

4.7.2 Hindered Cavitation: Negative Interactions

If the acoustic coupling between neighboring cells is not sufficiently strong,
the positive triggering described in the previous section does not happen.
However the cells can communicate hydraulically if their walls (or pits in the
case of xylem) allow for water flow. Such flow is reponsible for the last stage
of bubble dynamics, i.e. the slow growth of the bubble (cell emptying) over
long timescales (Bminutes) (see Section 4.6); its origin is the pressure im-
balance between the relaxed liquid contained in the cell after cavitation
(PCPsat40) and the liquid in the surrounding cells, which is still at negative

Negative Pressure and Cavitation Dynamics in Plant-like Structures 151



pressure. This outward flow rehydrates the neighboring cells, resulting in an
increase of pressure in these cells, by a mechanism symmetrical to that
described in Section 4.3.1 (see Figure 4.9b). This increase in pressure makes
the neighboring cells less likely to cavitate (see Section 4.5), and thus cavi-
tation in one cell tends to hinder cavitation in the immediate vicinity
(negative interaction).

Figure 4.9 Propagation of cavitation in multi-cell systems, either due to positive
interactions between cells (a) or negative interactions (b–c), see text for
details. (a) The oscillation of a bubble in one cell creates a pressure
disturbance sufficient to trigger cavitation in the neighboring cells.
(b) Cavitation in one cell can also temporarily prevent cavitation in
neighboring cells, because the cavitated cell acts as a source of water that
rehydrates its surroundings while the cell is emptying (i.e. while the
bubble is growing); t¼ 0 refers to the appearance of the cavitation
bubble, and colors indicate the evolution of pressure in each cell (darker
corresponds to higher pressure). (c) As a result, cavitation events develop
an exclusion zone of larger pressure around them, where cavitation is
hindered. The sequence in the left panel shows a simulation of the
evolution of the pressure field due to four distinct cavitation events
(labeled 0 to 3 in chronological order) in a multicellular structure; the
white lines represent iso-pressure contours at �17 MPa, inside which
cavitation probability is essentially zero. The panel on the right is an
experimental recording of cavitation ‘‘bursts’’ resulting from the com-
plex relaxation dynamics of the pressure field. Panel (c) reproduced from
ref. 26 with permission from American Physical Society, Copyright 2014.
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The pressure increase progressively spreads to other cells further away,
forming an exclusion zone around the initial cavitation event, where cavi-
tation is suppressed (see Figure 4.9c, left). The extent, Dr of this zone grows
over time, t, and its growth is dictated by the poroelastic transport properties
in the medium: DrB

ffiffiffiffiffi
Ct
p

where C [m2 s�1] is an effective diffusivity some-
times called a consolidation coefficient. C scales as the ratio of permeability
of the structure to its effective compressibility, w¼ wq þwc,26,56 showing once
again the importance of compressibility effects in cavitation dynamics. The
growth of the exclusion zone is fed by the emptying of the cell where cavi-
tation initially occurred, and this feeding stops when the cell is empty. As a
result, the maximum extent of the exclusion zone is DrexclB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ctempt

p
, where

tempt is the emptying time (see Section 4.6); Drexcl can be seen as the radius of
influence of a cavitation event in the medium. After the cavitated cell has
completely emptied, the associated exclusion zone progressively vanishes.
Consequently, the exclusion zone effect is both limited in space (radius of
influence Drexcl) and time (duration on the order of tempt).

The dynamics described above of rehydration with the formation of ex-
clusion zones around cavitation events was demonstrated experimentally in
artificial systems based on porous silicon.26 An interesting consequence is
that despite having negative interactions between neighboring cells, the
propagation of cavitation can occur by bursts of seemingly simultaneous
cavitation events (see Figure 4.9c, right). The reason for these bursts is the
complex evolution of the pressure field in the system, associated with the
regular formation and disappearance of multiple exclusion zones due to
stochastic cavitation events. This complex, nonlinear coupling between por-
oelastic transport and nucleation results in self-organized spatio-temporal
patterns that create burst-like behavior, i.e. periods with several cavitation
events followed by ‘‘quiet’’ periods with no cavitation events. Compared to
bursts originating from positive interactions (see previous section), the
timescales involved here are much slower: in the artificial, xylem-like sys-
tems,26 individual events within a burst could be separated by tens of seconds,
while the bursts themselves happened every 15 minutes, approximately.

Potentially, in real xylem these timescales could be shorter or longer
(Bhours) depending on the geometry of the cells and physical properties of
the tissue (elasticity, permeability). In a living tree, these cavitation/rehy-
dration cycles could provide temporary relief in dry conditions by ‘‘sacri-
ficing’’ some water-conducting cells to rehydrate the surrounding tissues.
These cycles could also be related to the puzzling observation that some-
times the sap flow rate and xylem water potential in real plant leaves can
oscillate with periods on the order of the hour.69,70

4.7.3 Discussion

From the discussion above, it is obvious that the dynamics of cavitation in
multi-cell systems is rich and complex, and poorly explored. While a few
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experiments artificial systems have allowed us to unveil unexpected features
of cavitation propagation, probing the dynamics of formation of bubbles in
real systems is challenging, in particular for xylem in trees. Non-invasive
techniques such as magnetic resonance imaging or X-ray microtomography
are powerful but limited in sample size and/or time resolution.37 Much
simpler optical techniques have recently enabled direct visualization of
embolism development in xylem slices,1 living leaves71 or freshly cut bran-
ches;72 they are limited to samples sufficiently thin to allow for light
propagation but are promising as a tool to investigate cavitation and em-
bolism dynamics without the need of heavy experimental equipment.
Combined approaches using modeling, experiments with artificial systems,
and experiments on real plant tissues are needed to make progress on the
understanding of cavitation dynamics and its implications.

4.8 Conclusion
Plants live in an out-of equilibrium world where the atmosphere is often
sub-saturated in water vapor (humidity lower than 100%RH). As a result,
they naturally dehydrate, putting the liquid they contain into a state of
negative pressure, i.e. mechanical tension. Plants exploit this metastable
state in various ways: in xylem, negative pressure is used as a pulling force
to lift water from the roots to the leaves; in some ferns and fungi, cavi-
tation in the metastable liquid provides a sudden release of energy for
spore ejection strategies. However, cavitation in xylem also results in
embolism, which is detrimental to the plant. Optimized compromises
between efficiency and safety have thus evolved since the first plants ap-
peared on land.

In this chapter, we have discussed the basic physics of formation and
propagation of cavitation bubbles in cellular structures such as those found
in plants and fungi. As we have shown, this physics is rich, from the fluid
mechanics of ultra-fast bubble oscillations to the complex spatio-temporal
patterns of nucleation in systems with multiple cells in interaction. Most of
these results are supported by experimental investigations on artificial sys-
tems mimicking some aspects of plants; however, the dynamics of bubbles
in real plants is far from being well understood.

The development of synthetic structures has two goals. First, these
structures can help in understanding what is happening inside a real plant
by studying samples that are much simpler, controlled and accessible than,
e.g. a living tree. On this aspect, current developments should probably aim
at building structures that are closer to real plant tissues in terms of
geometry, permeability, elasticity, etc. For example, there is currently some
effort to understand bubble penetration through the nanoporous pits sep-
arating xylem vessels and e.g. the role of surfactants; artificial systems with
pore sizes similar to those of pits (typically 10–100 nm) would probably prove
useful in these investigations. The synthetic structures based on porous
silicon or hydrogels mentioned in this chapter currently have pores with
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diameters of only a few nanometers, which make bubble penetration
extremely difficult and unlikely.

The second goal of artificial systems is to develop technologies inspired by
plants to solve various problems in engineering, taking advantage of solu-
tions already present in nature. This direction has already proven fruitful,
with examples of biomimetic systems using negative pressure to pump
water,29,73 transport heat,74 or desalinate water.75 Improving these proto-
types, but also explore other applications such as energy harvesting or
mechanical actuation, should provide large inspiration for scientists in the
near future.

Appendix A Effect of Air on the Saturation Vapor
Pressure of Water

Equilibrium between liquid water and pure water vapor (in the absence of
air) occurs when the two phases are at the saturation pressure, Psat(T), by
definition. In this situation, the chemical potentials are equal in both phases
(mq(Psat)¼ mv(Psat)� msat(T)).

In the presence of air, the liquid and vapor phases are at a different
pressure: due to mechanical equilibrium with air, liquid water is at atmos-
pheric pressure, P¼ Patm, while water vapor is characterized by its partial
vapor pressure in air, p. By integration from the pure substance equilibrium
(msat), the corresponding chemical potentials are

mq¼ msatþ vm(P� Psat) (4.19)

for liquid water (assuming an incompressible liquid), and

mv¼ msat þ RT ln
p

Psat

� �
(4:20)

for water vapor, assuming that it behaves as an ideal gas. Derivation of eqn
(4.19)–(4.20) can be done using the thermodynamic relation equating the
partial derivative of m with respect to pressure to the molar volume, v, of the
substance (constant v¼ vm for the liquid phase, v¼RT/p for the vapor phase).

We define psat as the equilibrium partial vapor pressure, p when the liquid
is maintained at atmospheric pressure, P¼ Patm. Using the equality of
chemical potentials between eqn (4.19)–(4.20),

psat ¼ Psat exp
vmðPatm � PsatÞ

RT

� �
(4:21)

which yields psat/Psat¼ 1.0007 at 25 1C; this factor depends weakly on
temperature.

At first sight, one could think that because psat4Psat, water vapor at psat

would be supersaturated, i.e. metastable with respect to condensation.
However, this is not the case, because condensation is also affected by air
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pressure: the condensed liquid phase forms at Patm, not at Psat. This extra
pressure makes condensation only favorable when p4psat. As a result, the
equilibrium with liquid water at Patm and water vapor at partial pressure psat

in air is a true, stable equilibrium shifted from Psat because of air pressure.
Using this shifted equilibrium as the new reference state (mair

sat), the chemical
potentials can be rewritten

m‘ ¼ mair
sat þ vmðP� PatmÞ

mv ¼ mair
sat þ RT ln

p
psat

� �
8><
>: (4:22)

for the liquid and vapor phases, respectively.
We finally note that air has another potential effect on the liquid–vapor

equilibrium of water. Indeed, by dissolving in liquid water at a concentration
Cair, air results in an osmotic pressure PairCRTCair with an associated shift
in chemical potential Dmair,sol¼�vmPair. From the solubility of air in
water,76 one can estimate PairC2 kPa when the water is saturated with air.
Since Pair{PatmC100 kPa, Dmsol

air¼�vmPair is negligible compared to the
shift in chemical potential introduced by air pressure, Dmpressure

air CvmPatm. In
other words, the effect of dissolved air on the saturation vapor pressure is
orders of magnitude smaller than the effect of the mechanical pressure of
air, which is itself already quite small.

Appendix B Free Energy of a Confined Bubble
Here, we derive the free energy landscape of a vapor bubble (volume, V) in a
liquid (Vq), both enclosed in a container (Vc) that is elastic (potentially, in-
finitely stiff). Thus,

Vc¼ Vþ Vq (4.23)

We use the state of the system at V¼ 0 (homogeneous liquid, no bubble) as
the reference state, where the liquid pressure is P0 (see Figure 4.7). Since the
liquid occupies the whole container, Vq¼ Vc in this reference state; we define
the reference volume V0 as being the value of Vq and Vc in this situation. Note
that the reference pressure P0 is not atmospheric pressure here, but the
initial pressure of the liquid, which is negative in the situations of interest in
this chapter.

We consider an isothermal transformation, with a constant total number
of water molecules (liquidþ vapor) in the system. This assumption is justi-
fied by the fact that during the timescales of interest for bubble nucleation,
the liquid does not have time to flow out of the cell (see Section 4.6.5).
Pressure in the liquid varies as a function of bubble size: bubble expansion
compresses the liquid (Vq decreases) and makes its pressure P increase. This
increase in pressure also makes the container expand (Vc increases if not
infinitely stiff), and as we will see below, we can use knowledge about the
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variations of Vc with P to fully characterize the free energy variations of the
outside world due to variations in bubble size.

For such a system, the natural thermodynamic potential is the Helmholtz
free energy, F, and equilibrium is obtained when F is minimal. We use the
notation DF¼ F� F0 to describe the Helmholtz free energy difference be-
tween the current state (bubble volume, V) and the reference state (V¼ 0).

Below we evaluate the different contributions to the total Helmholtz free
energy variation DF of the system as a function of bubble size (V): liquid
pressure (P) and compressibility (wq), elastic deformation of the container
(wc), surface tension of the liquid–vapor interface (g), and evaporation of the
liquid into the bubble (vapor pressure, Psat). The derivation below follows a
different and more general approach compared to earlier versions,25,46 but
yields the same final result.

a. Liquid pressure and compressibility.
We use the linearized equation of state of liquid water (eqn (4.1)), taking

the homogeneous liquid at negative pressure as the reference state:

Vq� V0¼�wqV0(P� P0) (4.24)

We first consider that the liquid does not evaporate into the bubble and thus
evolves at constant substance amount n when the bubble forms. In a second
step, we will calculate the correction due to evaporation (see Evaporation into
bubble paragraph below). Because dF¼�SdT� PdVþ mdn for a pure sub-
stance (with parameters n, V, T), then DF ¼�

Ð
PdV for constant T, n and we

can directly obtain by integration of eqn (4.24) the free energy of the liquid as
a function of its volume:

DFq¼�P0ðVq � V0Þ þ
1
2

1
wqV0

V‘ � V0ð Þ2: (4:25)

b. Evaporation into bubble. In reality, a small fraction of the liquid evapor-
ates into the bubble (amount Dn). We make the simplifying assumption that
this evaporation maintains the vapor in the bubble at the saturated vapor
pressure, Psat. There are subtleties in the consequences of this assumption but
is impact on the results in classical nucleation theory is negligible.43

Since F¼ mn� PV, the total free energy of the vapor in the bubble is

Fvap¼ msatDn� PsatV (4.26)

where msat is the chemical potential of saturated vapor, which is also by
definition the chemical potential of liquid water at pressure Psat, because
liquid and vapor are in equilibrium when P¼ Psat.

In our situation, however, the liquid is not at Psat but at P, so its chemical
potential is msatþ vm(P� Psat), neglecting second-order compressibility ef-
fects. Thus, using F¼ mn� PV again, the change in free energy of the liquid
due to evaporation is DFliq,evap¼�Dn(msatþ vm (P� Psat))� P(�vmDn), or

DFliq,evap¼ msat(�Dn)þ vmDnPsat (4.27)
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As a result, the total effect of evaporation is the sum of the contributions of
eqn (4.26) and (4.27)

DFevap¼ Psat(vmDn� V)C� PsatV (4.28)

where we neglect vmDn compared to V because of the large difference be-
tween liquid and vapor densities; the term vmDn should be kept when
working close to the critical point, but we do not consider such
situations here.

Note that it is also possible to add contributions from other gases present
in the bubble,46 but we neglect this effect here. In particular, we assume that
dissolved air does not have time to significantly fill the bubble during the
timescales of nucleation.

c. Elasticity of container. When pressure changes in the liquid, the container
has an elastic response that we characterize using a linear approximation
similar to the one we used for the compressibility of water (see Section 4.2.2):

Vc� V0¼ wcV0(P� P0) (4.29)

For example, if the container is a spherical inclusion in an infinite, in-
compressible solid, wc¼ 3/(4G) where G is the shear modulus of the
medium.46

When Vc changes by dVc, the outside world (including the container itself)
changes volume by �dVc and receives work from the fluid (pressure P) by an
amount

Ð
PdVc. By definition, its free energy changes by the same amount, so

that the contribution of the container deformation (and of the outside world)
to the changes in the total free energy can be calculated from integration of
eqn (4.29)

DFc¼ P0ðVc � V0Þ þ
1
2

1
wcV0

Vc � V0ð Þ2: (4:30)

Note the similarity but also the difference in sign compared to eqn (4.25), due to
the fact that while liquid contracts when pressure increases, the container ex-
pands. Note also that we do not need to know the details of the physical pro-
cesses occurring in the outside world that result in how much the container
deforms under pressure (e.g. entropic vs. mechanical, etc.): only knowing the
relationship between container volume and inner pressure (eqn (4.29)) is suf-
ficient to characterize the outside world contribution to the total free energy.

d. Total free energy. We can now write the total Helmholtz free energy DF as
a function of the volumes V, Vq, Vc by summing all the contributions above
(eqn (4.25), (4.28), (4.30)) and the contribution of the surface tension g of the
liquid–vapor interface, which by definition is gA, where A is the surface area
of the bubble:

DF¼ gAþ ðP0 � PsatÞVþ
1

2V0

1
wq
ðVq � V0Þ2 þ

1
wc
ðVc � V0Þ2

	 

(4:31)

where we have used eqn (4.23) to simplify some terms.
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We can further simplify eqn (4.31) by using the relationship between V, Vc

and Vq that is implied by the liquid and container equations of state. Indeed,
from eqn (4.24) and (4.29), and using V¼ Vc� Vq, it is straightforward to
show that

Vq � V0 ¼ �
wq

wq þ wc
V

Vc � V0 ¼
wc

wq þ wc
V

P� P0 ¼
1

wq þ wc

1
V0

V

8>>>>>>>><
>>>>>>>>:

(4:32)

These equations can also be found by direct minimization of DF with respect
to Vq and Vc for an imposed value of V. Injecting the volume relations from
eqn (4.32) into eqn (4.31) yields

DF ¼ gAþ ðP0 � PsatÞVþ
1
2

1
V0ðwq þ wcÞ

V 2: (4:33)

Note that we have not made assumptions about the shape of the bubble or
container, and our calculations thus apply to arbitrary shapes.

We also note that eqn (4.33) is less general than eqn (4.31) because the
former uses the equilibrium relations (4.32) and thus implicitly assumes
that liquid and container volumes evolve in mechanical equilibrium given a
constraint of bubble volume of size V. In other words, eqn (4.33) already uses
a partial minimization of eqn (4.31) to relate Vq and Vc to V and reduce the
number of degrees of freedom to one (V). By contrast, eqn (4.31) has two
degrees of freedom (three variables Vc, Vq, V with the constraint Vþ Vq¼ Vc)
and could in principle be used to describe situations where these quantities
evolve independently (e.g. oscillation of the container and bubble that are
not in phase). This may be confusing at first because we initially used
equilibrium relations to derive the free energies of the liquid and of the
elastic deformation of the container. However, this is only an illustration of
the fact that reversible transformations can be used to probe the state
variables of thermodynamic systems.
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5.1 Introduction
The physiology, mechanics and hydraulics of plant roots are a complex and
stimulating challenge for soft matter scientists. Understanding their
mechanics and growth properties at different spatial scales as well as their
complex interplay with the environment requires multidisciplinary ap-
proaches and interests many research fields ranging from soil science1 and
civil engineering to biomechanics2 and biophysics3,4 and even extends to
applied domains like food processing5 or bio-composite engineering.6

Plant roots absorb the water and nutrients required to satisfy the shoot’s
demand and ensure the mechanical anchorage and stability of the whole
plant against wind blowing, water flows or soil movements.7,8 They may also
provide functions other than those directly beneficial to the plant itself, as
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roots interact with and alter the properties of the surrounding soil in many
ways. Vegetation may be used as an ecologically friendly and sustainable
alternative to more traditional hard engineering solutions for soil re-
inforcement in civil engineering but also for deep C sequestration through
increased root development at large depths.9

Soil-property-altering effects of roots can be grouped into two categories.
Firstly, roots add additional strength to the soil. This can help to reduce
erosion10–12 or help mitigate against streambank instabilities13,14 or (shal-
low) landslides.15–17 Secondly, plant transpiration changes the soil moisture
balance in the soil, which for example can be used to control moisture levels
in landfill covers.18

Clearly the intricate properties of root and soil raise fundamental ques-
tions related to soft matter principles traditionally addressed in complex
fluids, granular and porous media, composite and fibrous materials, cellular
foams or mechanics of thin and inflatable structures. In this chapter we
present some aspects of the root–soil interaction by focusing on the material
properties of roots and their physical effects on soils. In the first part, we
detail the specificity of the growth and mechanics of a single root and how
the growth of a root is affected by the mechanical strength of the soil. In the
second part, we introduce its counterpart, the soil, and the mechanical and
hydric modifications provoked by the growing root at the local scale. In the
last part, we extend to the whole root system and present the complex
interplay between soil and roots, especially in the context of soil manage-
ment and civil engineering.

5.2 The Single Root: An Interesting Material for Soft
Matter Studies

5.2.1 How Does a Root Grow?

A growing root is not simply an advancing thin rod.19 Root elongation occurs
in the root apex, by the two fundamental processes of growth in plants: cell
proliferation and cell expansion. In the root apex, these two processes are
spatially separated, in the meristem and in the elongation zone, respectively
(see Figure 5.1). The spatial extent of these two zones is controlled by different
molecular gradients (hormones, reactive oxygen species) maintained by cell
activity and molecular flows.20 New cells are produced in the meristem by cell
division and some cell expansion, bringing cell size over a threshold before
the next division. The cells reaching the transition zone between the meristem
and the elongation zone leave their meristematic state and start to expand
rapidly, increasing their volume by up to 200 times by vacuolisation (increase
in size of the vacuole, an organelle consisting of a membrane containing an
aqueous solution). In addition, cell expansion is strongly anisotropic, giving
the root a cylindrical shape. Finally, while the root apex structure is rather
constant, it is a dynamic structure in which cells flow from the tip to the
maturation zone and go through significant morphological changes.21,22
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Quantifying organ growth requires a detailed characterisation of the
motion velocity field, which can be monitored using video or time-lapse
photography. Since root growth occurs mainly in the longitudinal direction,
most studies considered only this longitudinal axis, reducing growth
analysis to one dimension. However, roots grow also in diameter, and lon-
gitudinal and diametric growths do not respond similarly to constraints.23,24

While the root apex is pushed into the soil by expanding cells, cells within
the root apex are moved away from the root tip (Figure 5.1) and it is con-
venient to analyse growth as a function of the distance to the root tip.
Pioneering growth kinematics studies include those by Goodwin and
Stepka,25 who analysed growth of the transparent root of Phleum pratense by
following cell displacement under a microscope, and Erickson and Sax,21

who used streak photography of corn roots marked with lamp black in water
solution. By tracking the displacement velocity of cells or of artificial marks
at the root surface, they characterised the velocity field.

Figure 5.2A presents a typical velocity field along a poplar root apex, the
referential being the quiescent centre (defined in Figure 5.1). The plateau
highlights the maturation zone, and the maximal velocity Vmax corresponds to
the overall root growth rate (RGR). Taking the first spatial derivative of this
velocity field provides a quantitative characterisation of the relative elemental
growth rate (REGR) or strain rate along the root apex (Figure 5.2B and C).
The longitudinal profile of REGR shows that material expansion is very low in
the meristem, increases strongly when the cells leave their meristematic state,
reaches up to 30% h�1 in the middle of the elongation zone and then
decreases progressively to zero at the distal end of the elongation zone, when
cells reach their final size and enter in maturation.

Since these pioneer works, technological advances in computer, imaging
and image processing have promoted high-throughput analyses. For instance,
tracking the natural marks generated at the surface of the roots by infrared
light (Figure 5.2D) instead of carbon particles deposited on the root surface has
allowed high spatial resolution and long-term monitoring.26,27 Particle image
velocimetry (PIV), which permits the quantification of the instantaneous speed
of a flow from the analysis of image sequences, is at the basis of several
applications dedicated to kinematic analyses.28–30 The development of these

Figure 5.1 Cell flow in the constant root apex structure. The root apex is covered by a
root cap that protects the meristem. The quiescent centre, which is an
organisational centre, is surrounded by stem cells that divide and produce
cells that proliferate in the meristem. Cells elongate and divide at the
same rate in the meristem. In the elongation zone, cells only elongate.
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tools contributed to many growth kinematic studies aiming to understand the
regulation of root growth in response to its environment.24,31–33

While cell proliferation in the meristem is indispensable for root growth,
most of the increase of tissue volume is due to rapid cell expansion in the
elongation zone.34 Plant cells are surrounded by a rigid pecto-cellulosic cell
wall, allowing cells to live in hypo-osmotic media without bursting, by op-
posing the internal hydrostatic pressure, called the turgor pressure (P). Cell
expansion requires water and solute inflows, and the cell wall to expand. The
visco-elasto-plastic nature of the primary cell wall and the production of new
cell wall elements make the volume expansion of the growing cells

Figure 5.2 Growth parameters along a poplar root apex, the referential being the
quiescent centre. (A): velocity field. (B): strain rate in h�1. (C): visual-
isation of the strain rate by Kymorod.30 The amplitude of the strain rate
is given by the colour code on the right, with a scale in s�1. (D): picture of
the root apex with the natural marks generated by the infrared light
(wavelength 850 nm).
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possible.35 If water and solute flows are assumed not to be limiting, root
growth depends on cell turgor pressure and on the cell wall rheological and
biologically regulated properties of elongating cells. In fact, phenomeno-
logical analyses of root growth showed that, under steady state, the root
growth velocity (or RGR, mm h�1) is observed to be close to an affine func-
tion of cell turgor pressure P (Figure 5.3A):

RGR¼m�(P� Y) (5.1)

where m is an extensibility coefficient characterising the ease of axial ex-
pansion and Y is a minimal turgor threshold.36

Attempts are made to relate this macroscopic phenomenological growth
law (eqn (5.1)) to the irreversible expansion rate at the cellular level estab-
lished for the expansive growth of cells with walls, like algal, fungal or plant
cells (see Chapter 3). These Lockhart laws couple the net rate of water uptake
that maintains the turgor pressure P to the rate of cell wall deformation37

(see Chapter 1). Under turgor pressure, the rigid walls of the cell are loaded
in tension, like the walls of a vessel under pressure (Figure 5.3B). Balance of
forces implies that the hoop (orthoradial) stress syy and axial stress szz in the
cell wall are directly related to the turgor pressure P by a geometrical amp-

lification factor
R
h

that depends on the thickness h of the cell wall and on the

radius R of the cell (with Rch), such that:

syy¼ 2szz ¼
R
h
� P (5:2)

Although currently debated, the cell wall has often been considered as a
Bingham fluid, which deforms irreversibly above a yield stress sY with a
plastic viscosity ZP: while turgor pressure P exceeds a given threshold PY, cell
walls flow and expand. Whereas P is isotropic, the primary cell walls are
mechanically anisotropic. They behave like composite reinforced materials
made of (rigid) cellulose microfibrils embedded in a (soft) gel of pectin and
hemicelluloses. Due to a preferential orientation of the microfibril de-
position, the walls of a growing cell are softer in the axial (longitudinal)
direction, and cells elongate mainly in the axial direction. Thus the relative
variation of the length ‘ of a cell with time t, or strain rate _e, can be written as:

_e¼ 1
‘

d‘
dt
¼ szz � sY

ZP
¼ R

2h
� ðP� PYÞ

ZP
¼FðP� PYÞ (5:3)

with PY¼
2h
R
sY and F¼ R

2h
� 1
ZP

is the extensibility defined at the cellular level

(see Chapter 1). A crude (and formally not exact) extrapolation at the tissue scale
of eqn (5.3) consists in replacing the length ‘ in the denominator with LGZ, the
typical length over which the root grows. This approximation gives information
on the scaling of the root growth velocity or RGRBF P� PYð Þ � LGZ.
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The similarity between eqn (5.1) and (5.3) helps to understand the physical
meaning of m and Y entering eqn (5.1). The minimal turgor pressure for
growth Y¼ PY, is in fact associated with a tensorial quantity, the axial yield

Figure 5.3 (A) Velocity of root growth as a function of turgor pressure P (at the root
scale). Maize (open circles) and wheat (solid circles) roots were bathed in
a series of mannitol solutions for adjusting the turgor pressure. Pea roots
(solid triangles) were grown in soils of different density. Reproduced
from ref. 36 with permission from John Wiley & Sons, Copyright 1994
New Phytologist Trust. (B) Mechanisms of expansive growth for a cell of
radius R with rigid cell wall under turgor pressure P. The surrounding
cell wall (in green) withstands the axial and orthoradial (hoop) tensile
stresses associated with the internal (isotropic) turgor pressure P (in
blue). The mechanical anisotropy of the cell wall due to a particular
deposition of cellulose microfibrils (schematically symbolised by the
hoop fibres in black) leads to a longitudinal increase of the cell length ‘
when the turgor pressure increases.
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stress of the cell wall. On its side, the extensibility parameter m scales like

m � R
2h
� 1
ZP
� LGZ � F � LGZ, where LGZ is taken as the root growing length and F

is its average extensibility, usually expressed in MPa�1 h�1 units.
While cell turgor pressure P is observed to be uniform longitudinally over

the growth zone,23,38 the strain rate is not uniform and shows a bell-shaped
profile along the root apex (Figure 5.2B). Thus, as cells are moved along the
growth zone, strain rate variations must be controlled by variations in cell wall
properties through parameters such as ZP or sY. At the tissue scale, the root
growth velocity dependency with turgor pressure (eqn (5.1)) does not provide a

direct measurement of
1
ZP

or sY, but of m and Y. Determination of the two

latter parameters along the root growth zone revealed that m is relatively
constant and that Y varies according to the variations of the strain rate.39

5.2.2 How Does a Root Behave Mechanically?

One of the first steps towards a better understanding of the root penetration
mechanisms or for implementing mechanical models for the stability of
root-reinforced soils starts with the knowledge of the mechanical properties
of individual roots. Even at this scale, the derivation of mechanical prop-
erties of a single root is challenging because it deals with a multicellular,
inhomogeneous and anisotropic tissue under turgor pressure. Therefore it is
sometimes difficult to find consistent values of the mechanical parameters
for plant roots, like Young’s moduli or ultimate strengths.

Most experiments carried out tensile tests on roots, either in situ by
pulling out roots from the soil or ex situ by performing tensile tests with
universal testing machines on excised segments of roots. In most works, the
tensile modulus E and the tensile strength sU of roots are observed to decay
with increasing root diameter d. Roots with smaller diameters appeared to
be stronger and stiffer. Usually some negative power-law relationships of the
form Epd�a or sUpd�b are proposed, but the exponents a and b greatly vary
among works. In the meta-analysis of Mao et al.,40 the b values for root
strength are ranging from 0.51 to 1.77, depending on the species. This dif-
ference in b values covers a distinction according to the functional group of
the species: large woody roots are mainly found in trees or shrubs, whereas
fines roots are common to all species. To be incorporated into models of soil
stability, phenomenological laws have been derived by averaging over many
species from the same functional group. For instance, an averaged rela-
tionship sU¼ 28.97d�0.52 is obtained for tree roots, the diameter d being
in mm and the strength sU in MPa. Another law sU¼ 21.05d�1.15 is obtained
for grass or herbaceous roots. These results have practical importance for
interpreting the stability of root-reinforced soils: the thinner roots that have
high tensile strength would slip while the thicker roots would break during
soil shear41 (see Section 5.4.3).
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The power-law relation between tensile strength and diameter has been
mainly explained by changes in root chemical composition, either by an in-
crease of cellulose content42 or alternatively by a decrease in the lignin/cel-
lulose ratio as the diameter increases.43 Clearly the description in terms of
diameter is not sufficient to describe the variety of behaviours. By performing
tensile tests on excised segments of barley (cereal), Loades et al.44 have shown
that the correlation of the power-decay regression law is improved when the
roots are classified according to their type (either seminal, nodal or lateral).
For root diameters ranging from 0.4 to 0.6 mm, seminal roots can be five
times stiffer than lateral roots (with a Young’s modulus of around 7 MPa).
This difference according to the root type shows the importance of root in-
ternal structure and anatomy with possible changes in cell wall structure,
composition or tissue density. These differences are also observed for dif-
ferent ages or locations from the apex.41,42,45 The growth environment also
affects the root’s mechanical properties. For instance, in waterlogged con-
ditions, roots are weaker and more compliant. This difference is probably due
to the formation of aerenchyma, a spongy tissue with increasing air spaces
within roots to help the plant survive in anoxic conditions.

In fact, the former mechanical description in terms of diameter implicitly
assumes that roots within the same diameter class have a similar function.
However, root morphology varies greatly among and within species. Ac-
cording to McKormack et al.,46 the broadly defined fine root group should be
split into two distinct classes: absorptive fine roots and transport fine roots.
Absorptive fine roots approximately represent the first-, second-, and often
third-order roots in the branching hierarchy, while transport fine roots are
those of higher developmental orders. The transport fine roots are charac-
terised by secondary development, with the appearance of a cork periderm
(secondary dermal tissue that replaces the epidermis, the outermost layer of
cells, along older roots), the thickening of cell walls and the deposition of
additional suberin, a biopolymer which reduces movement of water and ions
radially across the root and changes the tissue chemistry and therefore the
mechanics of the roots. In contrast, absorptive fine roots grow only in length
(primary growth), have a shorter life and show no secondary growth.

Whatever its fate (fine short-lived or coarser long-lived), any root under-
goes compression while growing in length or elongating in soil. This
prompts compression tests to be carried out on these different root types,
paying particular attention to their water status.

Interestingly, in the context of food engineering, the water status of the plant
tissues is known to have a drastic influence on their mechanical and rheo-
logical properties. In this field, improved knowledge is needed to maintain
product quality and tissue firmness during harvesting, handling, transport and
storage of processed foods like bread or fruits and vegetables. The long-term
storage of tubers like potatoes47–49 and the drying of vegetables and fruits like
apples50 or pumpkins51 have been characterised in food technology by classical
mechanical tests like compression and tensile cycles or oscillatory shear tests,
at different ages or with different osmotic adjustments to control the moisture
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content of the plant tissue. Changes in water content lead to differences in
turgor pressure at the cell scale and have a tremendous effect on macroscopic
mechanical properties like elastic modulus, fracture toughness and yield
strength. Models have been proposed to take into account the hierarchical
cellular structure of plants for explaining the macroscopic mechanical tissue
behaviour from the microscopic scale with pressurised cells.52,53

As for plant parenchyma, the hydric status of the root tissue, which is
linked to the turgor pressure, is a key parameter to take into account when
performing mechanical tests on roots. Yet its effect has often been dis-
regarded. By testing excised segments of chick-pea radicules with a universal
testing machine, we have observed that the Young’s modulus E(t) in
compression dramatically evolves with time t after excision. For example,
E increases by a factor of 35 from E1¼ 8.0
 0.3 MPa (value obtained at
t¼ 13 min after excision for the first test of compression) to E10¼ 285
 20 MPa
after a duration of around t¼ 2.5 hour for a given root segment (of diameter
d¼ 1.490
 0.025 mm) compressed at a strain rate of _e¼ 3% min�1 (upper
curve (yellow) cross centre square in Figure 5.4A). The amplification factor on
Young’s modulus was only 16 for another root tested at the same strain rate
but with a larger initial diameter d¼ 1.860
 0.025 mm (half-full diamond
(yellow) in Figure 5.4A). Compared with segment of roots exposed to air, the
Young’s modulus of roots placed in mannitol baths at the isotonic concen-
tration of 0.15 M (such that there is no net flux of water between the root and
the bath) did almost not evolve with time, with average values around 2 MPa.
Therefore, the evolution of the Young’s modulus with time is clearly linked to a
drying process of the excised root in air. But the drying process for roots with
the same length is more rapid for thinner roots compared with thicker roots: in
proportion they have a smaller reservoir of water in the bulk volume compared
with their external surface exposed to drying. Thus plotting the evolution of the
Young’s modulus as a function of the root’s diameter d(t) or equivalently as a
function of the area of the root section S(t) at mid-length (Figure 5.4B) is a way
to rescale the data coming from segment of roots with different initial
diameter, thus evolving differently with time t of drying. The collapse of

curves is rather good and shows power-law decays of the form
EðtÞ
E1
/ SðtÞ

S1

� ��a
,

with E1 and S1 being the corresponding values obtained for the first
compression test.

This behaviour is reminiscent of that observed in solid foams or engi-
neering cellular solids.54 These models have also been adapted for some
plant tissues, like parenchyma, where a power-law relation exists between
the macroscopic Young’s modulus E of the plant tissue, the microscopic
Young’s modulus ES of the solid part (cellular walls) and the solid fraction
(calculated without the protoplasm filling the cells), i.e.

E
ES
� fn (5:4)
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Depending on the turgor pressure, different exponents n4055 are observed.
In the case of root drying, the solid fraction of the root tissue increases with

time due to water losses of the protoplasm (plant cell without the cell walls),
which leads to the solid part being radially shrunk into a smaller section. Thus
the solid fraction f(t) of the cell walls in the tissue increases with time t. Ac-
cording to eqn (5.4), the cellular foam model might explain the increase of the
Young’s modulus E(t) with time of drying, at least phenomenologically. Thus E(t)
might progressively increase from the Young’s modulus of the tissue under full
turgor E0¼ E(t-0) until the one ES¼ E(t-N) of the solid part (cell wall) only.

Finally, these results might provide a possible alternative or comple-
mentary explanation for the observed decaying power relationship relating

Figure 5.4 Evolution of the Young’s modulus E in compression in air for segments of
roots subjected to a series of k loading–unloading cycles (from k¼ 1 to
k¼ 10) separated by rest periods during which the root is drying. The
colours correspond to different loading rates. One root experiencing a
loading rate of 5% min�1 broke between cycles k¼ 4 and k¼ 5. (A) E as a
function of time t. (B) rescaling of the Young’s modulus E as a function
of the root section S for the different experiments in log-log scales.
The Young’s modulus E(t), as well as the section S(t) which depend on
time have been normalised by their corresponding values E1 and S1 at
time t¼ t1 (values at the first cycle). The two dotted (blue) lines are guides
for the eye and correspond to power-laws with exponent �2. For com-
parison, the slopes of �1 and �3 are also represented by the slopes of the
grey triangles. Image courtesy of E. Kolb.
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Young’s modulus (and also ultimate strength) to root diameter in soil
science tests. Roots of smaller diameter dry more rapidly, and consequently
their Young’s moduli increase faster with time. When testing roots of dif-
ferent diameters, this drying could have a drastic effect on the mechanical
results: the cutting and fixation of roots in a mechanical setup require some
incompressible time delay during which the roots dry if directly exposed to
air. If the roots initially have an identical turgor pressure, thin roots tested
after a given time delay will show a higher Young’s modulus than thicker
ones. Therefore, the dependency of the Young’s modulus with diameter
might be in certain cases an artefact that comes from different drying rates.
This approach might rationalise some mechanical data obtained in soil
science and explain a part of the huge variability of Young’s modulus and
strengths of roots or shoots reported in the literature. In some cases, this
variability could be due to an evolution of the root moisture content, which
is very sensitive to air drying, even for small time exposures (a few minutes).

Note that the same results have been obtained by Boldrin et al.56 in tensile
tests on woody roots during progressive and controlled dehydration mois-
ture equilibration in soil with contrasting water contents. The authors also
concluded that root water status is a factor that can cause (inappropriately)
high strength values and the large variability reported in literature for thin
roots. They recommended testing all root diameter classes with consistent
moisture for fair comparison.

An important final point to mention is that mechanical stimulation is
known to affect plant growth and material properties by changing the de-
velopment of shoots and roots.57 This response is termed ‘‘thigmomor-
phogenesis’’ and is observed for trees58,59 as well as for herbaceous plants.
For instance, in the work of Goodman and Ennos,60 the roots of flexed
shoots of sunflowers and maize plants were not only thicker and more nu-
merous than those of plants that received no mechanical stimulation, but
their own mechanical properties were also affected by external mechanical
stimulation: the flexed primary nodal roots of maize were stiffer and
stronger. These types of studies show that roots can respond to changes in
soil strength61 and therefore one can consider reducing plant lodging by
manipulating soil mechanical properties.60

5.2.3 How do the Mechanical Stresses of the Soil Affect Root
Growth?

While growing in the soil, a root tip experiences a variety of biological and
physico-chemical cues from its close environment. Root growth and
morphology are affected by these spatial and temporal fluctuations of soil
properties. This root response is called ‘‘phenotypic plasticity’’.

Among the soil physical properties, compaction is known to have a drastic
effect on root growth. As a direct consequence of compaction, root pene-
tration is mechanically restricted. The compacted state of a soil is measured
by mini penetrometers, with a probe diameter ranging from 0.1 to 10 mm
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depending on experiment (laboratory or field). Usually the penetrometer
consists of a metal probe with a conical tip attached to a cylindrical shaft of
smaller diameter to avoid lateral friction. The force required to push this
metal cone into the soil at a constant velocity (around 1 mm/min) divided by
its cross-sectional area gives the mechanical strength of the soil (in MPa), or
‘‘mechanical impedance’’, as it is known in the soil science community.
Compared with non-impeding soils, root elongation rate is typically halved
in repacked soils, with penetrometer resistances from 0.8 MPa (for cotton) to
2 MPa (for maize and peanut) in the absence of water deficit.62 So increased
soil strength induces a decrease of the axial growth rate, resulting in a de-
crease of the individual root length and of the whole root system size.61

To model the growth biomechanics of a root in a resisting soil charac-
terised by a mechanical strength s, Greacen and Oh (1972)63 suggested that
the elongation rate of an impeded root can be described by a modified form
of the Lockhart equation: in the axial direction, the soil resistance acts
against the effective pressure P� Y needed for axial growth and pushing. If
water is not limiting cell expansion, the root growth velocity (and following,
the RGR) is assumed to be proportional to (P� Y� s). Thus a modified
version of the Lockhart equation was proposed in the following form (which
may be subject to discussion depending on the definition of s):64

1
L
� dL

dt
¼F � ðP� Y� sÞ (5:5)

with the same notations as in eqn (5.1) or eqn (5.3): P is the cell turgor
pressure, Y is the minimum pressure threshold depending on cell wall bio-
chemistry, t is the time. In eqn (5.5), L is simply defined as the length of the
‘‘elongating tissue under consideration’’ and F is the corresponding exten-
sibility. The term Yþ s is considered as a new effective threshold for growth.
Note that the frictional stresses at the root flanks are not explicitly taken into
account in eqn (5.5) where only an axial stress at the tip is considered.65

In a strong soil, the root is completely impeded when the growth stops.

According to the modified Lockhart eqn (5.5), the condition
dL
dt
¼ 0 gives the

maximum soil strength which roots can overcome:

sMax¼ P� Y (5.6)

Due to the quasi-static conditions of growth this value can be viewed as
the maximum axial stress a root is able to exert on a soil. Thus the cell turgor
pressure P (of the order of 0.5 MPa) gives the right order of magnitude of the
‘‘maximum growth pressure’’ sMax a root is able to exert in a soil.19

Laboratory model experiments provide a direct way to measure the axial
growth force generated by an impeded root while growing against a force
sensor. With force techniques such as shear beam apparatus, force trans-
ducer, dead-load system or digital balance,66 the axial force was observed to
increase gradually with time until a plateau was reached after a typical
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duration of 10 to 24 hours. Then the maximum axial force FMax the root
exerts is divided by its cross-sectional area to obtain the maximum growth
pressure sMax. For instance, for primary roots of pea66 with a root diameter d
of the order of 1.5 mm, the maximum force was around 1 N and the cor-

responding sMax¼
FMax

ðp=4Þ � d2 was of the order of sMaxE0.5 MPa. Note that

this huge value of 5 atmospheres is completely consistent with the equation
relating sMax to the turgor pressure P (eqn (5.6)).

The precise value of sMax depends on the species and on the apparatus,

but also varies with the determination of the root diameter d, as sMax /
1

d2. It

should be stated how the root diameter was measured, either in situ or after
having extracted the root from the impeding system, because the latter
method might lead to tissue relaxation and/or root drying. In addition, when
a root is subjected to high axial stress or long-term stress, there is often a
bulging of the root axis67 with an increase in diameter that appears to occur
in the elongation zone.68 Therefore, the exact location along the root axis
and the time at which root’s diameter was measured must be accurately
considered when comparing sMax data.

Despite these possible discrepancies, due mainly to uncertainties in
diameter measurements, the sMax values reported by successive reviews are
always in the range of 0.1–1 MPa, regardless of species.65,66,69 For example,
in the work of Clark et al.70 (1999), the mean value of sMax for dicots was
0.41 MPa (pea, lupin, sunflower), while the mean for monocots (wheat,
maize, barley, rice) was 0.44 MPa. Similar values were also obtained for the
axial growth of lateral roots of agricultural plants. Even for tree seedlings,
sMax¼ 0.22 MPa for the primary root axes of young tree seedlings of acacia
and sMax¼ 0.15 to 0.25 MPa for lateral roots of 3–4-month-old eucalyptus.71

Interestingly, the radial stress obtained for primary root growth experiencing
radial constriction is also found in the same range. By using a technique of
photoelasticity, we measured an average lateral stress of 0.3 MPa for chick-
pea roots of millimeter diameter growing in the gap between two photo-
elastic discs ensuring lateral constriction.72 But radial pressures in excess of
2 MPa were also derived from indirect measurements where roots were
capable of breaking stiff rigid chalk in Misra et al.73 (1986).

In brief, the ‘‘maximum growth pressures’’ of various species are con-
sistent with each other and are close to the cell turgor pressure. However, the
sMax values measured on roots in laboratory experiments are observed to be
smaller than the maximum soil strength sSoil fully impeding root growth and
measured by penetrometry in soils: roots are able to grow in soils of strength
higher than predicted by sMax. This shift may be explained by method
artefacts, or by the shape and frictional characteristics of the root tip. In
particular, a more acute root tip seems to better penetrate strong soils.74

Furthermore, the release of border cells and mucilage by the root cap is often
viewed as a way to lubricate the root–soil contact75,76 and to favour the
penetration of the root inside the soil.
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Another explanation comes from a time-dependent biological response of
the plant root or acclimatation to the mechanical stress. Indeed the cell wall
properties (Y and F) were shown to change in response to variations in cell
water relations77 and in response to mechanical impedance.67 An increase in
cell turgor pressure could also be an efficient way to counteract the soil
mechanical resistance but there is no conclusive evidence, as it was observed
that the turgor pressure P in the impeded roots was either increased78,79 or
unchanged.67

Besides a global increase in the bulk density, at a finer scale, compaction
leads to the alteration of the soil structure and of the connectivity of the
pore network with a decrease of the number of coarser pores. These
changes in the pore network limit the nutrient and water transport to roots
as well as the gas diffusion within the soil.80 So in addition to the mech-
anical effect that physically reduces the effective pressure for cell expansion,
soil compaction could affect root growth through a limited rate of oxygen
supply to the root or a thigmomorphogenetic response linked to the ac-
cumulation of ethylene within the root. Root growth is known to be sen-
sitive to hypoxia, and the similarity of root growth responses to soil
compaction and hypoxia was nicely demonstrated recently.81 Another re-
cent research highlights that soil compaction favours ethylene production
and accumulation within the root and that this hormonal signal is neces-
sary and sufficient to restrict root growth.80 Disentangling the mechanical
and the biochemical parts of the root growth reduction will need to con-
sider the temporal aspects of the responses more thoroughly. Following, a
refined version of the Lockhart equation is better suited to account for the
root thigmomorphogenetic response or accommodation to the mechanical
stress s:

1
L
� dL

dt
¼FðsÞ � ðPðsÞ � YðsÞ � sÞ (5:7)

P, F, Y are not constants, but are physiological properties that are actively
regulated and depend on the actual stress s, on the root environment and
also on the mechanical stress history of the root.82

In addition to axial growth modification due to a direct effect (change
of the effective threshold in Lockhart equation through eqn (5.5)) or an
indirect effect (change in the biomechanical parameters involved in the
axial elongation, eqn (5.7)), mechanical impedance commonly causes
roots to become thicker at a longer timescale.83 Most of the diameter
increase is due to cell radial enlargement in the outer cortex layer but
can also be produced by an increase of the number of cell layers in the
stele and in the cortex84 (see Figure 5.1). The increase in diameter is
viewed as a mechanical advantage to penetrate hard soil. According to
the review of Chen et al. (2021)85 on penetration processes, this radial
expansion can create fractures and produce deformation-induced soft-
ening ahead of the tip in cohesive soils (i.e. clays) or relaxation of
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the soil’s effective stresses ahead of the root tip in noncohesive soils
(i.e. sands).86,87 Moreover, roots with larger diameter might have a larger
bending stiffness, which helps in stabilising the root against buckling
events.19 Buckling is a mechanical instability of elastic rods that occurs
for an axial compressive force at the end that increases linearly with the
rod bending stiffness (E�I). E is the rod Young’s modulus and I its second
moment of area. Assuming that roots behave like rods and have a
circular cross-section E�IpE�d4, d being the root’s diameter. For instance,
a 60% increase in root diameter, which is observed for a heavily com-
pacted sandy loam soil65 will result in a 240% increase in the root’s
bending stiffness. Then thicker roots (either intrinsically or due to a
morphological response) have a higher probability of straight pene-
tration into the soil. Conversely, thinner roots are more prone to buckle
and to reorient their growth trajectory, resulting in a more tortuous root
system architecture. More recent works showed that root anatomical
phenes like cortex thickness are better predictors of bending strength
than root diameter per se.88

Root curvature and reorientation of the growth axis may be caused by a
passive phenomenon such as buckling but could also result from an
active process involving differential growth across the root section as a
result of a touch-avoidance response at the root tip. In some situations,
reorientation is considered a positive adaptive trait that allows the root to
bypass obstacles without being blocked. More subtle effects such as cir-
cumnutation89 (helical movement of the root apex of varying amplitude
and frequency) also ‘‘help’’ the root to bypass obstacles.90

All that has been said so far concerns elongating roots (young, non-
suberised): that is, primary growth. In comparison, the forces exerted by
large tree roots experiencing growth in diameter (secondary growth) have
not been so much investigated. Yet the costs of tree root damage on
infrastructure such as sidewalks and pipes are considerable.91,92 Most of
the works in this field characterised the pavement displacements and
cracks and focused on the root morphology in size, branch occurrence,
or cross-sectional shape.93 Indeed, mechanical stimulation (due, for in-
stance, to the loading produced by wind sway or due to the restricted soil
displacement imposed by the above pavement) can modify the secondary
growth of stems94 but also of roots95,96 and causes adaptive growth97

such as the development of an eccentric growth ring or the evolution
from a circular to an I- or T-shaped root section. In rare cases only,
forces produced by secondary growth of roots were measured: either
indirectly by measuring a posteriori the induced deformation of solid
foams sandwiching the roots98 or in situ by using load cells on cherry
tree roots99 (Note that in this case, the authors only provided a meas-
urement in N/m without clearly specifying the reference length. We have
deduced a pressure by taking a root diameter of 10 cm). In both cases,
the pressure was close to 0.4 MPa, again of the order of the turgor
pressure.

Root–Soil Interaction 179



5.3 The Impact of the Growing Root on the Physical
Properties of Soil

So far, we have focused on the growth and mechanics of single roots growing
in impeding soils. We will now turn our attention to the effects of roots on
the soil. After recalling some basics of soil mechanics, we will describe the
mechanical and hydric effects produced by the growing root on the
surrounding soil.

5.3.1 The Mechanical Strength of Soil

Soil—the geologically deposited material below the organic humus—is a
three-phase material composed of a solid phase (grains or particles), a liquid
phase (most often water) and a gaseous phase (air plus water vapour). Liquid
and/or gas fill the spaces between the solid particles, called ‘‘pores’’. Below
the water table, the soil is saturated: water fills the pores and the gaseous
phase is almost missing. Above the water table, in the vadose zone, all three
phases are present.

Soil can be considered at various spatial scales; for each scale different
physical characteristics of the soil are pertinent:

– at the bulk scale: soil density and water content
– at the scale of an assembly of particles: the closeness of the packing

(local packing fraction) and the particle contact orientations resulting
from the particle shape and form anisotropy

– finally, at the scale of a single particle: particle size, shape and rough-
ness (insofar as it affects the friction coefficient between particles).

Starting from the smallest scale, soil particles can be split by size into
mainly coarse cohesionless grains and fine cohesive particles. Fine cohesive
particles are typically smaller than 80 mm and include silts and clays. Putting
aside the physico-chemical adhesive forces between such fine particles, the
mechanical interaction between soil particles can be considered, for the sake
of simplicity, as essentially frictional in nature. At the local scale, friction
between particles and their shape (which can cause interlocking when inter-
particle friction is overcome, and acts as a further barrier to overcome) are
two key parameters to assess the mechanical properties of soils such as the
macroscopic friction coefficient m.

Moving onto particle assemblies, for a given soil (i.e. for a given grain size
distribution), particle packing fraction (dry density) is a key parameter af-
fecting the soil’s mechanical properties. Thereafter, the distribution of
particle orientations and interparticle contacts (soil anisotropy) can play an
important role.

When sheared (i.e. made to undergo a non-isotropic deformation) a soil
can change in density—if the soil is initially dense then it will be loosened
by shearing, and vice versa: if loose, it can densify. There exists an inter-
mediate value of density (‘‘critical density’’) at, or after which, there is no

180 Chapter 5



change in volume when shearing. A kinematically constrained dense sand
(for instance under isochoric conditions such as an undrained saturated
sand) is very hard to deform as it cannot dilate.

Since the soil can be thought of as particles interacting frictionally, the
friction force between particles needs to be overcome when the soil is de-
formed. In the simplest model, the interparticle friction force depends lin-
early on the interparticle normal force. The latter depends positively on the
external stresses applied on the soil volume. This means that the more
highly stressed or deeper a soil is, the ‘‘stronger’’ (i.e. harder to deform) it
becomes.

Thinking now about the effect of water, in the vadose zone, the risen water
above the water table is explained by capillary rise—the same effect that
sucks coffee into the suspended sugar cube in contact with the surface. This
is due to the geometry of the pores (although chemical effects can also cause
this) and is a stronger effect for smaller pores. This ‘‘suspended’’ water above
the water table has a pressure lower than atmospheric pressure. The cor-
responding negative difference of pressure will be referred to as water
pressure later on. These negative water pressures suck soil particles together;
thus suction increases the normal forces between particles and consequently
the frictional resistance between particles. It is for this reason that sand
castles can be built with vertical walls with partially wet sand. Study of this
‘‘water retention’’ phenomenon, for a given material, reveals that suction
increases with soil drying. This suction can be particularly strong for fine
soils and is still present even at rather low water content. A positive
(hydrostatic) water pressure in saturated soils takes away some strength in
the same way that a negative water pressure (the suction) increases strength.
The result is the fundamental concept of ‘‘effective stress’’ s0 carried by the
connected soil particles, which drives deformations of the solid skeleton.

Finally moving back to the bulk scale, and summarising, the resistance to
shearing of a given soil (defined previously as ‘‘strength’’) can be roughly
depicted as: soil strength depends on particle friction and shape, soil density
and effective stress. The classical Mohr–Coulomb failure criterion includes
the effective stress dependent strength m � s0 described above, plus a non-
stress dependent strength-cohesion c, resulting directly from physico-
chemical forces between fine soil particles:

t¼ m � s0 þ c (5.8)

where t is the shear stress at failure.
A complete introduction to soil mechanics can be found in Muir Wood.100

5.3.2 How Does Root Growth Affect Soil at the Particle Scale?

As plants grow, and consequently roots develop in the soil searching for
water, nutrients and anchorage, root volume must increase, which in turn
must affect the soil. This complex mechanical interaction is difficult to study
for a number of reasons, but principally because soil is not transparent
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(although some experimentalists use synthetic transparent soils101) and the
root system is a fine, networked structure, growing within it.

A key and early paper on the subject of root soil interaction is that of
Dexter102 (1987), which presents a mathematical model for the compression
of soil around roots, assuming the root volume increase is balanced by a loss
of pore volume in the surrounding soil. The paper clearly states the fact that
the necessary soil parameters are difficult to measure. The model presented
is that of an exponential fall-off of densification with radial distance from
the root.

Although there are many standard ways of testing soils, and of analysing
root systems, almost all are either not fully representative (laboratory test on
an elementary volume of rooted soil) or too destructive (pulling up a root
system, or epoxying and slicing a rooted specimen) to be of use to study the
root’s effect on the particle-scale organisation of a real soil. Studying a root
growing in soil against a glass wall is a popular technique.103 Although this
technique yields some interesting observations, how well these represent the
interactions deep in the soil is hard to know—the glass–soil interface is a
singularity for the root and the soil is imposed to deform in plane strain
condition (which is far from the 3D field case).

Less intrusive imaging techniques are beginning to show promise for the
observation of roots and soil interaction at the particle scale.104 Most notably
are 3D imaging techniques that use penetrating radiation to see through
samples and reconstruct a 3D field of attenuation. This means that a given
state of the soil–root system can be measured at a given point in time, and
subsequent measurement can be used to monitor evolutions. With the ad-
vent of microtomography, X-ray Computed Tomography (CT) is now routinely
capable of imaging a granular system composed of grains of 100 mm in size at
a resolution sufficient to identify individual grains, which provides an ideal
way to directly measure root–soil interaction at the particle scale (Figure 5.5).
It is worth noting that repeated CT scans may affect root growth, especially
when plants are exposed to X-rays for a longer time, and this needs to be
considered when interpreting the measurements.

X-ray tomography measures a 3D field of a ‘‘CT-value’’ roughly proportional
to the material density and (as usual in imaging) there is a trade-off between
field of view and spatial resolution, meaning that either a small volume can
be studied with a lot of detail or a larger volume with less detail. Current
capabilities are resolutions down to 1 mm and samples as large as 50 cm in
diameter (when using a medical scanner). A specific challenge in moist soil is
that the X-ray attenuation of water and of the young root can be quite similar,
although there are methods to circumvent this identification problem.

In the study of geomaterial deformations, this tool has yielded extremely
interesting results of local, 3D strain fields accompanying strain localisation
upon mechanical loading.

The particle-scale interactions of a growing root and a soil can be classi-
fied into three regimes of interaction depending on the relative size of root
diameter close to the tip and the size of the pores between the soil particles,
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along the lines of Bodner et al.105 (2014) and Lucas et al.106 (2019). Figure 5.6
presents the three different regimes—on the left the ‘‘soil displacement’’
regime occurs when the root size is much larger than the pore size. In this
case (in a homogeneous clay, for example) the root must displace soil par-
ticles to be able to advance. The weight and friction of the soil must ne-
cessarily be overcome, but as is common in these soils, some cohesion due
to suction is to be expected too. At the other extreme (Figure 5.6, right) the
‘‘pore invasion’’ regime is possible if the diameter of the growing root is
much smaller than the pore sizes between the grains in the growing medium
(coarse sand or gravel, for example); then the root can grow into the pores
without having to move any grains. Between these two regimes, in the
‘‘intermediate’’ regime (Figure 5.6, middle) where roots, grains and pores are
all of the same characteristic size, displacement of the soil is still needed for
the root to advance.

Using this as a guide, the relevant literature can be seen in this light.
Referring back to Dexter102 (1987), the model of soil densification implies
implicitly a sufficiently loose soil that will densify upon shearing, but the soil
is not necessarily in such a state. Besides, there is very little imaging work
where the soil is homogeneous (at the scale observed), which might cor-
respond to the soil displacement regime, which appears to be a gap needing
to be filled to understand root penetration into homogeneous clays.
Although particles cannot be imaged if the field of view should meaningfully

Figure 5.5 3D rendering of maize root growth in Hostun sand with colours corres-
ponding to the identified phases in the system (solid, water, air and
roots) at a given time on the left; extraction of the root phase and time
evolution of the maize root system 7 days after the seeding in the sand
sample (resolution 40 mm per pixel), adapted from ref. 125.
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contain the root, changes in soil density (when corrected for water migra-
tion) should be measurable in the CT value.

When considering the ‘‘pore invasion’’ regime, few published works with
imaging situate themselves in this case regarding root soil interaction—
since this is quite an unlikely topsoil—however, there is some important
work worth mentioning here concerning fibre-reinforced soils. Work from
the University of Bristol107,108 and further work with X-ray imaging109 reveal
that the presence of small and short pore-filling fibres, randomly oriented
and only a few percent by volume, can increase the shear strength of sand.
Significantly, the presence of these fibres makes sand behave as if it is
denser, the fibres effectively ‘‘stealing’’ some void space from the sand. The
jump from the system studied to a root system is not to be underestimated,
but this presents an important bridge for the study of root–soil interaction.

Most work can be classified in the intermediate regime, which is doubt-
lessly the most attractive for tomographic imaging. Pores can be individually
measured with imaging at this scale, which is of importance since many
studies are principally interested in changes of porosity and the resulting
changes in permeability. Since the effect of a root pushing soil particles
cannot be isotropic, some shear deformation is expected. This shear pro-
duces either increase of soil volume (dilation) or decrease of soil volume
(compaction) depending on the initial density of the soil. The supplementary
materials coming with Keyes et al.110 (2017) give an insight about this effect.
More recently, Anselmucci et al.111 (2021) measured both shear- and
volumetric-induced deformations and obtained values ranging from a few
percent or less, at few millimetres away from the root surface, up to almost
10% at the direct vicinity of the root. By considering the very simple model
for soil behaviour outlined in the previous section, much of the seemingly
contradictory soil behaviour that is discussed in literature may be clarified.

For instance, it is stated in the recent work of Lucas et al.106 (2019), that
‘‘Contradictory evidence exists regarding whether and to which extend [sic]
roots change soil structure in their vicinity’’. Nevertheless, the authors
conclude their study by saying that this can be reconciled by integrating the

Figure 5.6 Illustration of the three regimes of interaction of a growing root with soil.
From left to right, the relative size of root diameter compared with pores
between particles decreases: when soil particles are much smaller than
the root (left) they will be displaced; when the root is much smaller than
the particle and pores (right), the root will initially invade pores.
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mechanics of root growth and plant interaction with the existing soil
structure.

This is a key point, but in our opinion it could be taken further. This can
be done by completing the picture with a thorough description of the be-
haviour of the soil itself (in the form of a suitable model), which is an
additional key information to explain and predict the mechanical effects of
the disturbance by the root.

Helliwell et al.112 (2017) use X-ray tomography to study changes of soil
porosity due to root growth on sandy and clay soils systematically, revealing
a small zone of increased porosity close to the root—an expected effect of
geometry in the form of ‘‘steric exclusions’’, reflecting the fact that grains
can be packed less densely against a locally flat object such as a root. Further
afield from the root, porosity may still either increase or decrease, de-
pending on the soil nature, according to the authors, but it may well be
explained by the initial soil density. A very complete study from these au-
thors113 varying soil type and density, as well as plant type, systematically
shows a local increase in porosity next to the root, and sometimes a densi-
fication away from it. Koebernick et al.114 (2019) use synchrotron X-ray im-
aging on soils finer than usual and present a model for porosity around to a
growing root including the effect of steric exclusions.

Going forwards, it is worth keeping in mind the possibility of more
complex interactions between soil and a growing root than only the porosity
modification induced directly via mechanical interaction. Beyond the por-
osity, the pore size distribution may be affected.105 Besides, the constitutive
hydro-mechanical coupling in partially saturated soils (as discussed previ-
ously in terms of suction) may also contribute to additional soil deformation
of crack opening in the root vicinity due to the drying of soil by the root’s
water uptake.113 The role played by root hairs is also poorly investigated
because it concerns a low scale hardly reachable by direct imaging. Root
hairs seems to contribute to the soil deformation induced via the hydro-
mechanical coupling;115 but could the root hairs rearrange soil particles
directly, at least for fine soils (as per Champion & Barley116)?

X-ray tomography has proven to be an important and valuable tool for the
direct observation of root soil interaction with minimum disturbance. Al-
though the focus on porosity with the aim of revealing changes in permea-
bility is laudable in the current studies, this paints only a limited picture of the
key parameters relevant to the mechanics of the soil, ignoring soil micro-
structure, as well as subtle effects such as small-scale particle segregation.

Further input from soil mechanics in the interpretation of soil deform-
ation behaviour could be around the description of deformation itself as a
tensor, with invariants that merit study in themselves (roughly volumetric
strain—well studied and ‘‘shear’’ strain—unfortunately often missed—but
not in Keyes et al. (2017)110 or Anselmucci et al. (2021),111 for example).
Another interesting area probably not yet studied for practical reasons is the
post-root-penetration stage, where thickening and stiffening of the root
happens, with possibly different effects on the soil.
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There is a bright future for the meeting of soil mechanics and plant
physics around these imaging tools, and among others the effect that the
soil state (grain size, density, microstructure) has on the root system that
eventually develops.

5.3.3 How Does Root Mucilage Affect the Hydric Properties
of the Soil?

Root growth is facilitated by the secretion of mucilage from the root cap.117

Mucilage is a polymeric substance secreted at the root tip that is believed to
act as a lubricant facilitating root growth in dry, hard soils. However,
mucilage has other functions, which have just started to be understood and
which go beyond root growth. These functions are crucial to understand the
physical properties of the soil near the root, called the rhizosphere. In this
section we review the physical interactions between mucilage and the soil
and their implications for root and rhizosphere processes.

Mucilage is a gel mainly composed of polysaccharides, but also containing
a small fraction of lipids.118 It has a large water adsorption capacity (it can
hold an amount of water a hundred times greater than its dry weight119), and
a significant fraction of this water can be retained as the soil dries.120 As a
consequence, mucilage increases the capacity of the rhizosphere to retain
water. Besides simply increasing the volume of water in the rhizosphere,
mucilage also changes the spatial configuration of the liquid phase. Muci-
lage decreases the surface tension and increases the viscosity of the soil
solution.120,121 These properties avoid the break-up of liquid bridges, con-
necting soil particles due to capillary forces.

An example of mucilage distribution in a sandy soil during drying is
shown in Figure 5.7. The image was obtained using a light transmission
microscope after drying of mucilage from chia seed in a sandy soil. The
picture shows long filaments connecting distant grains as well as large
bridges between grains in contact with each other. Note that the bridges are
hollow, indicating that the polymers were deposited while the capillary
bridges between soil particles were still large. Further drying caused water
cavitation inside the hollow cylinders.

A theory of the physics of the deposition of polymer solution in porous
media was proposed in Carminati et al. (2017)121 and Benard et al. (2019).120

Compared to water in porous media, where capillary forces (together with
adsorption in clay soils) are the dominant forces for describing the liquid
configuration,122 in polymer solutions viscosity has to be taken into con-
sideration. As the soil dries, the concentration of the polymer solution in-
creases, the surface tension decreases and the viscosity increases. The
thinning rate of a viscous liquid bridge between two soil particles is pro-
portional to the ratio between surface tension and viscosity.123 As during
drying this number becomes increasingly smaller, long-living filaments can
be found after drying of mucilage in soils. Additionally, drying of mucilage in
porous media results in the formation of two-dimensional surfaces, such as
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hollow cylinders up to more complex interconnected surfaces.120 These
surfaces form when the viscosity of the polymer solution impedes the retreat
of the polymers together with water. This critical point depends on viscous
forces (which impede the retreat of the polymers) and water adsorption,
which pulls water toward the regions with higher polymer concentrations.
When water adsorption is no longer sufficient to overcome the viscous for-
ces, the polymers are deposited and their concentration rapidly increases.
The deposited surfaces act as a new solid matrix.

The consequences of these processes are manifold. The connection of the
liquid phase is preserved during soil drying. This means that the root surface
remains in physical contact with the soil matrix during soil drying. This is
fundamental for the uptake of water and nutrients by roots during drought
spells,120,124 as well as for the activity of microorganisms in the rhizosphere.

Additionally, the formation of viscous bridges between soil particles also
has the effect of stabilising the porous medium. This is visible when ex-
cavating the roots out of the soil. Typically, one observes a sheath of soil
particles adhering to the root surface. This layer of particles, including root
hairs, root exudates and microorganisms, is referred to as rhizosheath. The
porosity of the rhizosheath is expected to be impacted by the presence of
mucilage, which (1) attenuates the compacting effect of capillary forces and
(2) limits the capacity of soil particles to be displaced during drying. In
summary, mucilage is a key physical element used by plant roots to engineer
the soil microenvironment.

Figure 5.7 Chia seed mucilage deposited in a sandy soil upon drying. Thin bridges
(black arrow) connecting distant particles, and thicker bridges (white
arrows) between particles in touch with each other are visible. The sand
grains have a diameter of 100–200 mm. The picture was obtained with a
light transmission image. The method is described in ref. 120. Image
courtesy of P. Benard.
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5.4 The Complex Interplay of the Root System and
Soil

In the previous section we focused on the modification at the root scale of
the physical properties of soil due to the presence of a single root. We now
turn to a global scale to assess how soils are altered by roots.

In an engineering context, soil is treated as a continuum material despite
consisting of different materials (soil particles, water, air, organics, etc.) in
various phases (solids, liquids, gases). This approach is continued when
extended to rooted soil; any local effects near individual roots are ‘‘smeared
out’’ over the continuum, and the engineering properties of the ‘‘root-re-
inforced soil’’ as a single, homogenous material are investigated.

These properties are changed by roots in several interconnected ways.
Firstly, roots alter the structure of the soil by filling pores or dislocating
particles during the root growth process (see Figure 5.6). The mechanical
behaviour of soil (e.g. strength, stiffness, volume change during deform-
ation) is affected by changes in soil structure and porosity, as described in
Section 5.3.2 and observed by use of X-ray CT.125 In addition, changing
the pore structure alters the ability to maintain suction pressures (see
Section 5.3.1), resulting in changes to the soil–water retention curve126 and
increases the saturated hydrological permeability.127 The effect of the latter
on the initiation of landslides is contested: on the one hand, increasing the
permeability leads to water reaching potential failure planes earlier.128 The
increased pore water pressure reduces the soil strength and increases
the likelihood of soil failure. On the other hand, the increased lateral
drainage may channel more water downslope before the water is able to
percolate to potential failure planes,129 therefore increasing slope stability.

A second pathway through which the presence of roots alters the mech-
anical behaviour of soil is through changes in soil water content. Evapo-
transpiration reduces the soil moisture content and increases suction
pressure,130 resulting in additional soil strength. This is known as hydro-
logical root-reinforcement. Increased levels of suction may increase soil
shrinkage and soil cracking,15,131 which may be undesirable, for example
near infrastructure such as railway lines.132,133 Different plant species will
have different suction-increasing characteristics,130,134 so careful species
selection is important.

A third pathway through which roots alter the mechanical behaviour of
soil is through adding mechanical reinforcement. Roots have their own
mechanical stress–strain (constitutive) behaviour, which is very different
from that of soil. While soils are generally loaded in compression or shear
and are weak in tension due to their particulate nature, roots have signifi-
cant tensile strengths. Together, roots and soil form a composite material,
the behaviour of which must be a combination of the material behaviours of
both and therefore be different from that of unrooted soil.

Considerable debate has been given to whether hydrological or mechan-
ical root-reinforcement is most important for slope stability applications.
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Hydrological reinforcement can be much larger but is more variable
throughout the year. For slope stability applications in temperate regions,
where landslides often coincide with cold and wet seasons with minimal
evapotranspiration and near-saturated ground conditions, mechanical root-
reinforcement is generally considered more important.135

5.4.1 Shear Strength of Rooted Soil

The ability of the soil to resist shear deformations is often key for engin-
eering applications. Soils are generally loaded in compression due to self-
weight but have high compressive strength, making failure in shear the most
likely. Landslides are a typical example; here a mass of soils shears off the
underlying stationary soil or rock, and so is an example of erosion. Because
of these applications, historically research has focused on finding the in-
crease in the peak shear strength of rooted soil. Starting in the late 1970s,
this has often been quantified as an additional cohesion term in the Mohr–
Coulomb failure criterion (defined in eqn (5.8)) often used for soils.136,137

Small-diameter roots reinforce the soil through mobilising tensile resis-
tance.135 When roots are sufficiently anchored, either through soil–root
interface friction or lateral branching,138 their full tensile capacity may be
reached and the roots may break. When anchorage is insufficient, the roots
will slip (‘‘pull-out failure’’). Thicker roots can mobilise significant resist-
ance through bending or shear effects and may reinforce a slope in a way
similar to soil nails, a common slope stabilisation technique used in civil
engineering.15 While these mechanisms are widely recognised, no clear
guidelines are available to help differentiate between ‘‘thin’’ and ‘‘thick’’
roots based on a simple criterion of root diameter. Rather a distinction
between absorptive and transport fine roots might be useful for fair com-
parison of mechanical properties (see Section 5.2.2).

While soil typically requires small strains (shear strains in the order of
percentages) to mobilise peak resistance, roots are much more flexible with
tensile failure strains in the order of 15–20%. Experiments have shown that
significantly larger shear displacements are required to mobilise the full
capacity, much larger than those in unrooted soil.139–141 While this does not
pose much of a problem when analysing the stability of natural slope or
erosion problems (where deformation does not matter; only peak re-
inforcement does), it may be more important when vegetation is used for
stabilising road or railway embankments or cuttings that may come with
strict deformation tolerances.

5.4.2 Laboratory Measurement of Root-reinforcement

Measuring the mechanical properties of rooted soil is a major challenge.
Using standard soil mechanics laboratory tests to measure the stress–strain
behaviour of rooted soil, such as the direct simple shear test or the triaxial
test, comes with two major limitations. Test samples are relatively small,
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making them more prone to sample disturbance, which is a major concern
in rooted soil because of the need to sever roots during sampling. Small
samples, furthermore, may lack sufficient root length for realistic root an-
chorage within the soil. Secondly and more importantly, standard testing
equipment can apply only limited strains. While these are sufficient to get
most soils beyond peak resistance and towards the critical state, at this point
strains in roots are still relatively small and peak rooted soil strength may
not be reached.

Because of these limitations, the most commonly used test for measuring
the strength of rooted soil is the direct shear test (or ‘‘shear box’’)
(Figure 5.8), in which one half of a sample is pulled laterally, forcing a failure
plane to localise near the interface between the moving and stationary
halves. This test is easily adaptable for tall samples (e.g. 500 mm142,143), al-
lowing tests with more realistic root lengths. Displacements may be large,
allowing the full tensile capacity of roots to be reached. This test gives results
only about displacement and forces applied to the outside of the sample,
while (internal) stresses and strains (which tend to localise near the failure
plane) remain unknown. Recent X-ray testing on rooted direct shear samples
shows that these deformation patterns may be complicated and different
from those in unrooted soil.143 This makes this test less suitable for char-
acterising the soil constitutive behaviour, but it remains useful for testing
root-reinforcement in discrete sliding problems such as landslides.

Root architecture (e.g. root tortuosity, orientations, branching) has been
recognised as affecting mechanical reinforcement. It is, however, hugely vari-
able and difficult to control in laboratory conditions, making studying its effect
in isolation challenging. Root analogues can be used instead (see Figure 5.9 for
an example), allowing the use of reproducible architectures144,145 at the expense

Figure 5.8 Shear box tests of unroooted soils and rooted soils with different species.
Image courtesy of G. J. Meijer.
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of accuracy in root mechanical properties. The advance of 3D printing has
enabled the printing of more complicated architectures, allowing for the study
of entire root systems, for example of scale models of trees,146 and has enabled
the production of root analogues that simultaneously reinforce through
mechanical and hydrological mechanisms.147

Methods to study changing soil behaviour due to an increase in matric
suction are well established. Typically, this is measured using a triaxial test,
in which the air and water pressure within the pores of the soil sample can
be independently controlled.

The strength and stiffness of soil is strongly dependent on the magnitude
of mechanical stress in the soil. A geotechnical centrifuge can be used to test
scale models. By increasing the gravity, realistic soil stresses are achieved in
the scale model. This methodology has recently been used to investigate the
stability of vegetated slopes.148–150 Careful selection of the centrifuge accel-
eration is required to find a good balance between accurate scaling of root
diameters, strengths and growth depth.140

5.4.3 Field Measurement of Root-reinforcement

Measuring root-reinforcement in field conditions is equally challenging. The
most common method to test the strength of rooted soil is again the direct
shear test, which has been successfully used for decades.137,139,151 The field
version is generally larger than its laboratory equivalent, with square shear
areas typically around 300-500 mm wide. A block of soil is excavated around
the sides and encased in a four-sided rectangular frame, which is translated
laterally while measuring the resistance. Additional overburden may be
placed on top to maintain realistic confining pressures. To isolate the effect
of roots, measurements in similar but unrooted soil are required.

Figure 5.9 3D-printed scale model of a tree root system. The root system is shown
upside down and printed from Acrylonitrile Butadiene Styrene plastic.
Image courtesy of X. Y. Zhang and J. A. Knappett, University of Dundee.
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A second commonly used approach is to collect measurements of both the
root quantity and root strength to predict the additional reinforcement using
predictive models. The number of roots and their diameters can be meas-
ured either in the field by counting root intersections with a vertical plane
(‘‘trench wall’’ method17,152) or by removing them from soil samples in the
lab by means of washing with water.153 As mentioned in Section 5.2.2, the
root strength is commonly measured in the lab using uniaxial tensile tests
on individual roots.154 Alternatively, field pull-out testing can be used, in
which individual roots are pulled out of the soil while measuring the force
required.155 This will lead to more conservative strength values since roots
may slip out rather than break.

Recently, new experimental techniques have been trialled to develop
more portable and faster tests that can be used to characterise rooted soils
on sites with limited accessibility or when many tests are required due to
spatial or temporal variability. The ‘‘corkscrew test’’ (Figure 5.10A) limits soil
disturbance by rotational insertion. Subsequent upwards translational

Figure 5.10 (a) ‘‘Corkscrew’’ and (b) ‘‘pin vane’’ device to measure the shear
strength of root-reinforced soil. Image courtesy of G. J. Meijer.
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extraction mobilizes rooted soil strength along the outside of the soil plug
caught within the helix, measured with a load cell.141 The ‘‘pin vane test’’
(Figure 5.10B) measures the resistance against rotation of a soil cylinder.156

Alternatively, the ‘‘blade penetrometer test’’ infers the properties of indi-
vidual roots from the measured change in penetrometer resistance with
depth caused by individual roots (gradual increase in resistance followed by
a sudden decrease associated with root failure underneath the penetrometer
tip, see Figure 5.11).157

The change in soil strength due to root water uptake is often quantified by
measuring the penetration resistance of the soil (e.g.134). Techniques for
measuring soil water contents (e.g. theta probes) and matric suctions (e.g.
field tensiometer) in the field are well established and will therefore not be
further discussed.

5.4.4 Root-reinforcement Modelling Techniques

Dedicated modelling of mechanical root-reinforcement models started in
the 1970s, with what is now commonly referred to as the Wu/Waldron
model.136,137 The peak root-reinforcement, expressed as an additional soil
cohesion, is calculated using the sum of the tensile strength of all roots
crossing a soil plane and a simple correction factor accounting for the effects
of root orientation, often set to 1.2. Its assumption that all roots break
simultaneously has often been criticised, resulting in the advance of Fibre
Bundle Models,158 which account for sequential root breakage and therefore
predict lower but more realistic reinforcements. This approach has since
been refined into the Root Bundle Model, making sequential mobilisation a
function of root stiffness159 and, in some versions, a statistical distribution

Figure 5.11 Example depth-resistance trace measured using the ‘‘blade penetrom-
eter’’ in the surface soil layer of a mature Pedunculate oak plantation.
More details about this site, test methodology and results can be found
in ref. 157.
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of root strength.160 A significant amount of work has tried to use such an
approach to find the most realistic Wu/Waldron correction factor, now often
thought to be much nearer 0.4.

Root-reinforcement by individual, thicker roots requires accounting for
additional bending and shear resistances. Such effects have been investi-
gated using Discrete Elements Methods161 or Finite Element Methods by
incorporating roots as discrete elements in the mesh.162,163 Alternatively,
such roots can be modelled using spring-supported beam bending theory,
commonly used in the field of structural mechanics.164–166

Recently, some research has been directed towards modelling the full
stress–strain behaviour of homogenous, rooted soil, by developing appro-
priate constitutive models. One can either develop a single constitutive re-
lation167,168 or use constitutive modelling techniques developed for soil–fibre
composites. In the latter approach, the individual constitutive behaviours of
both roots and soil are combined based on their volumetric fractions.169

5.5 Concluding Remarks
The many interactions between soil and roots and their effects on the
mechanical behaviour of rooted soil are complex. The large number and
diversity of recent publications in this field show how this field of research
lies at the crossroads of different disciplines.

In the context of climate change and food security, breeding programs on
the most worldwide food crops (such as wheat, maize or soybean) federate
research teams working in physiology, soil science or plant genetics.170 Bad
rooting due to hard layers or compacted soil limits the access of roots to water
and nutrient resources. As plants have to invest more carbon in root growth,
the amount of carbohydrates available to the above-ground parts is reduced
and the crop yield is lower, leading to significant economic impacts. Adapting
root systems to specific soil conditions and identifying the root traits en-
abling for efficient growth at minimal carbon costs could improve the crop
rooting in the extending compacted arable lands.171 But breeding approaches
would gain from cross-talks with other fundamental research fields.
Although the specific and genotypic diversity could be a source of improve-
ment,81 understanding the root growth and morphological responses to soil
physical properties at the root scale is also needed. Among others, this ap-
proach involves fields such as biomechanics, biophysics and soft matter to
identify how roots respond to spatial and temporal variations in soil prop-
erties such as moisture, gas diffusion, temperature and compaction.

The observed ongoing climate change is also associated with stronger and
more frequent windstorms, and the sustainability and development of forest
ecosystems depend on their capacity to survive and adapt to multiple en-
vironmental cues. The stability of trees depends on the development of their
root system and thus on the interactions between root growth and soil
properties to resist uprooting caused by wind. But intense rainfall events, by
soaking the soil, affect the root–soil complex and the anchorage of large trees.
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On the other hand, the use of plant root systems in soil science and civil
engineering for stabilising soils against landslides, erosion or earthquakes
does not necessarily meet the same requirements as for agriculture and forest
management.172,173 Despite the potential of vegetation to be used as an en-
gineering material, widespread application remains limited to date, as en-
gineers require reliable material parameters to ensure soil failure does not
occur. But the biologically, spatially and temporally variable nature of vege-
tation provides some major challenges. To facilitate wider future uptake, the
behaviour of rooted soil for engineering applications needs to be better
understood and uncertainty margins reduced, requiring interdisciplinary
approaches.

Plant roots are also a fabulous source of inspiration for biomimetic ap-
proaches. The way the root penetrates a soil is a model of efficient digging
that soft robotics aims to reproduce. In particular, during primary root
growth, the portion of the root moving relative to the soil is limited to the
elongation zone, which minimises friction with the soil, unlike a penetrating
rod. One of the engineering challenges is to minimise the energy con-
sumption of the burying process by optimising the shape and mechanical
properties of the probe and the strategies of actuation for the penetration.85

Materials of the roots and more generally of the plants themselves are the
subject of intense biomimetic research in material science. For example, a
growing cell wall is a thin, strong and pliant extracellular layer.35 It forms a
powerful composite material, capable of extension without decohesion of
the rigid cellulose microfibrils from the soft polymeric hydrated matrix.
Reproducing these peculiar properties from scratch is a challenge in
chemistry. The strong, non-electrostatic chemical interaction between cel-
lulose and xyloglucan (one type of hemicellulose found in the cell wall soft
matrix) is commonly reproduced for applications in the textile, food, pulp
and paper industries, and even at the nanoscopic scale for ‘‘green’’ nano-
composite films made entirely from renewable resources of such biopoly-
mers.174 At another scale, the mucilage released by the root tip with its
particular wetting and rheological properties forms a peculiar gel network in
contact with water175 and might be also a source of inspiration from a
physico-chemical point of view. But its special properties also come from the
fact that the gel is trapped in the pores between the soil particles and is a
part of the rhizosphere, the small volume of soil modified by roots.

Clearly, studying the mechanical interactions between growing roots and
rearrangements of soil particles is part of a wider research issue involving
the spatio-temporal complexity of the rhizosphere’s functioning, with
physical, chemical and biological feedbacks between roots, particles, rhi-
zodeposition and microbial activity.176
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125. F. Anselmucci, E. Andó, L. Sibille, N. Lenoir, R. Peyroux, C. Arson,

G. Viggiani and A. G. Bengough, E3S Web Conf., 2019, 92, 12011.
126. C. W. W. Ng, J. J. Ni, A. K. Leung and Z. J. Wang, Géotechnique Lett.,
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CHAPTER 6

Invasive Processes in the Life
Cycle of Plants and Fungi

KARUNA KAPOOR AND ANJA GEITMANN*

Department of Plant Science, McGill University, Macdonald Campus,
21111 Lakeshore, Ste-Anne-de-Bellevue, Quebec, Canada
*Email: geitmann.aes@mcgill.ca

6.1 Introduction
The cells of multicellular organisms generally occupy specific locations within
tissues and organs to serve specialized metabolic or structural functions. In
animal bodies, there are numerous exceptions to this spatial constancy: blood
and lymph cells are transported through the entire body by the respective
circulatory systems; neurons elongate their axons through other tissues to
innervate them; and cancer cells migrate through tissues and change location
via the circulatory system. In plants, no circulation of cells occurs, although the
position of individual nuclei may change across substantial distances, in
particular in large, multinucleate syncytia or coenocytes. The nuclear migra-
tion is similar to that occurring in many filamentous fungi and slime molds,
where nuclei can move over large distances within multinucleate cells.1 Be-
cause of the absence of cell migration proper, however, spatial constancy of
cells within the plant body is more pronounced than in animals. This is even
more so since plant cells are encased in an extracellular matrix and glued to
each other by the middle lamellae, dramatically limiting movement of cells
relative to each other.2 Collectively, the middle lamella and the encasing cell
walls in the plant body are called the apoplast, a scaffold that confers structural
stability to plant organs and cements cells in space. However, even within the
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plant body, certain cells produce extensions either to reach distant regions in
the same organism or to explore the external environment. Just like in animal
organisms, these motile activities in plants often require the cells to invade or
squeeze between their neighbors and through narrow spaces.

Invasive cell types in plants include root hairs, pollen tubes, sclerenchyma
fibers, and laticifers. The invasive lifestyle and associated elongated cell
shape can serve a variety of purposes. Elongated cells can provide structural
stability to the organ, analogous to the steel rods reinforcing a concrete
structure (sclerenchyma fibers), facilitate procurement of nutrients and
water from distant sources (root hairs),3 or transport cargo (pollen tubes).
A second type of invasion to which plant bodies are subjected is that by
symbionts and pathogens of fungal and bacterial origin. Some of the inva-
sive activities performed by other organisms exploit structural openings in
the plant body, such as stomata or intercellular air spaces, whereas others
see the invader drill into the apoplast or even into the lumen of individual
cells. As long as cellular extension or invasion exploits openings in the tissue
traversing gas or liquid spaces, the invading cell does not encounter any
mechanical obstacle. However, when invasion or extension occurs against or
through a solid or viscous matrix, typically the apoplast, the invading cell has
to overcome mechanical obstacles.

The forces required for the invasive and migratory behavior of animal cells
such as neurons, cancer cells, and fibroblasts are generated by the cytoske-
letal system and have been covered in numerous reviews.4,5 In the following
we focus on the invasive lifestyle of walled cells in plants, fungi, and oomy-
cetes. We elaborate on the key structural parameters involved in maintaining
an intrusive activity in walled cells—the turgor pressure and the regulation of
cell wall mechanical properties.6 The cytoskeleton in these cells is important
in its role as regulator of intracellular trafficking and cell wall assembly.7 We
discuss how invasive cells may facilitate their activities by secreting agents
that soften the invaded substrate and we review experimental techniques and
numerical methods developed to measure the invasive force.

6.2 Invasive Growth Serves a Diverse Range of
Functions

6.2.1 Elongated Cells Can Confer Structural Stability

Among the longest cells in the plant body are fibers with lengths up to 120 mm
in Boehmeria nivea, 33 mm in Linum usitatissimum.8 These sclerenchymatous
cells (cells with thick lignified secondary cell wall and typically dead at ma-
turity) serve to stabilize the plant body against mechanical stress.6,9 This
mechanical role depends on structural and geometrical parameters that in-
volve the accumulation of cellulose and lignin in significant amounts at
mechanically critical positions within organs.6 Fibers are formed in various
plant organs, including roots, shoots, leaves10,11 and are particularly abundant
in the phloem or secondary xylem of eudicotyledon plants and surrounding the
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vascular bundles in the leaves of monocotyledons.6,12 The structural function
of fibers relies on their resistance to compressive, bending, and tensile forces
all of which may occur in the same organ. Fibers have also been considered to
act akin to animal muscles, as in some situations they are thought to have
contractile properties.11,13,14 This action is displayed, for instance, during
gravitropic responses, climbing and underground positioning of geophytes.11

Because of their mechanical, structural and biochemical properties, scler-
enchyma fibers are key for the mechanical properties of timber-based con-
struction materials and constitute an energy-rich component for the fuel wood
industry. The flexibility combined with tensile resistance of bast fibers in flax,
ramie, hemp, jute, and kenaf are also exploited in the textile industry.10,11,15,16

The extreme length of sclerenchyma fibers is generated starting from
relatively short precursor cells formed in meristems—the stem cell niches in
plants. Fiber differentiation and morphogenesis, therefore, require the cells
to expand in a highly anisotropic manner and through surrounding, slower-
growing tissues (Figure 6.1a). This occurs through intrusive growth that
penetrates the apoplast connecting neighboring cells.6,10,11,17 Plant fibers are
thus, in principle, an excellent model to study plant invasive growth, cell wall
formation, and cell wall mechanics. However, despite their structural prop-
erties and economic importance, the mechanics underlying their intrusive
behavior is still poorly understood. This is mainly due to the fact that fibers
are formed within the depth of the organ and surrounded by other tissues,
which renders their isolation or in situ live cell observation difficult.6,11

6.2.2 Invasion for Cargo Delivery Across Tissues

Elongated cells provide an excellent catheter-like system that enables the
transport of cargo from one region of the organ to another, even across
tissue boundaries. One such trans-tissue transfer is required for successful
fertilization in flowering plants. The sperm cells must be shuttled from the
pollen grains upon their arrival on the landing platform of the pistil—the
stigma—through the stylar transmitting tissue to the female gametophyte lo-
cated in the ovary. This transfer is accomplished by a cellular protuberance
formed by the germinating pollen grain, the pollen tube. This protuberance
emerges from an opening in the hard outer wall of the pollen grain and
undergoes localized elongation at the very apex. This tip growth process is
reflected in the extremely polar organization of the cytoplasm18,19 and the
spatially confined expansion of the cell surface.20,21 Depending on plant spe-
cies, the diameter of a pollen tube varies between 5 and 20 mm and the length
can extend up to tens of centimeters depending on the length of the pistil.
While the entire pollen tube consists of a single vegetative cell, the active
portion of the pollen tube cytoplasm is restricted to the apical portion of the
cell only, and the distal region is plugged off and eventually degenerates.22

When invading the stigma and transmitting tissue of the style, pollen tubes
have to overcome multiple mechanical constraints (Figure 6.1b–d). The
elongating tip of the tube, therefore, has to exert sufficient penetration force in
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order to withstand the external compressive stress generated by transmitting
tissue while maintaining the direction towards its target, the ovule.23,24

6.2.3 Spreading out for Procurement of Nutrients and Water

Cells elongating beyond the perimeter of the organism, into the external
substrate, confer the ability to explore a larger space on the search for nutri-
ents or water. In order to fulfill their nutritional needs from diverse biological
and synthetic substrates, filamentous fungi extend colonies by forming
branched hyphae that have the ability to penetrate solid substrates of con-
siderable mechanical stiffness, including rocks. Hyphae are commonly
formed by yeasts, mushroom-forming fungi, and also by oomycete water
molds.6,25,26 Hyphae are tube-shaped cells with a diameter ranging from
2 to 20 mm, elongating at the tip region, similar to pollen tubes. The hyphae of
a fungal organism often grow in a direction centrifugal with regards to the
center of the mycelium to ensure the most efficient exploration of the sub-
strate.6 Although hyphae usually elongate individually, they sometimes ag-
gregate in parallel to form a structure called a rhizomorph. These
rhizomorphs can have a diameter of several millimeters and can elongate
several meters in length.6 They have the invading capacity to penetrate
through soil or wood in search of nutrients, which are then transferred to
developing fruiting bodies.27,28 When penetrating and elongating, fungal hy-
phae secrete enzymes that digest polymers to sugars and other molecules that
can be taken up through the plasma membrane.25 The enzymatic digestion is
also thought to soften the physical impedance of the surrounding substrate.25

Certain fungal hyphae establish a symbiotic relationship with plant root
tissues, where the plant provides organic molecules such as sugar to the
fungus and the fungal partner provides water and minerals absorbed from the
soil to the plant.29 This association is highly intimate, since it involves the
invasion of the fungal hyphae into the apoplast of the root epidermal layer

Figure 6.1 Various types of invasive cells: (a) Development of sclerenchyma fiber
cell from meristem precursor. Initial elongation occurs by diffuse growth
in lockstep with surrounding parenchyma cells, but once these cease
elongation the continuation of fiber growth occurs by tip growth.
(b) Mechanical obstacles in the pathway of the pollen tube towards the
ovary include the stigmatic cuticle, the apoplast of the transmitting
tissue, the micropyle, and the nucellus. (c) Pollen tube making its way
through the apoplast of the stylar transmitting tract. (d) Pollen tube
emerging from the transmitting tissue elongating on the surface of the
funiculus, turning into the micropyle of the ovule. (e) Fungal hyphae of
arbuscular mycorrhiza, a type of endomycorrhiza, invade the epidermis
and cortex of the plant root by penetrating the apoplast and building
branched structures inside the lumen of root cortex cells. (f) Fungal
hyphae of ectomycorrhiza cover the root surface forming a sheath and
penetrate the root epidermis forming a Hartig net. Occasionally, in
particular in contact with gymnosperms, the hyphae of ectomycorrhiza
reach external cortex layers.
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(ectomycorrhiza) or the root cortex (endomycorrhiza)6,29 (Figure 6.1e and f).
Endomycorrhiza not only invade the root apoplast but actually grow into the
root cell lumen, where they form arbuscular structures that augment the
interaction surface between the fungus and the protoplast of the plant cell.

The plant root is not only subject to invasion, it is an active invader and
exerts this action at different scales. At the cell scale, roots produce their own
extensions that explore the substrate beyond the surface of the organ. This is
done by root hairs—tube-shaped, tip-growing extensions emerging from the
epidermal cells of the root that range from 5 to 17 mm in diameter and about
0.1 to 1.5 mm in length.30,31 Similar to fungal symbionts, root hairs serve to
increase the interaction surface between the absorbant region of the root
and the soil, thus facilitating nutrient and water uptake.3,32,33

Root invasion also occurs at the scale of the organ. In their interaction with
the growth substrate, roots grow against and interact mechanically with soil
particles. The soil is not the first or only obstacle for root growth, as newly
forming roots (radicles) encounter mechanical impedance in the form of the
seed coat34 or, in the case of lateral roots, the outer layers of the primary
root.35 Since lateral roots are formed from the pericycle—a cell layer in the
central stele of the primary root—reaching the outside requires the exertion of
invasive forces for the young lateral root primordium to break through the
outer tissue layers of the primary root (Figure 6.2). The mechanical interaction
of the root with an external matrix influences distinct morphological and
developmental changes in the root system.36 Studies done on the roots of
cereal crop species have revealed irregular cortical cell growth, increased root
diameter, and bending and buckling of the root tip as a result of mechanical
resistance from the soil particles.36,37 This mechanical impedance created as
a result of compacted soil layers or soil drying can be a major limiting factor
to root elongation and hence nutrient uptake for the plant. Increased soil
strength requires roots to exert higher forces to ensure successful soil pene-
tration.38 To minimize the effect of soil mechanical impedance, roots of
maize (Zea mays) and soybean (Glycine max) use natural or artificial macro-
pores in the soil or growing matrix. Invading these openings in the otherwise
compact material allows the roots to follow the path of least resistance.38–40

Another common response to increased soil strength is the thickening of
roots, which decreases penetrative stresses and stabilizes the root.41,42 Root
hairs have been suggested to play a supportive role during root penetration by
anchoring the root to the surrounding soil.33,43

Given the fundamental importance of root growth through various soil types
for yield and drought resistance, numerous biomechanical frameworks have
been established for soil penetration mechanics. Root growth forces have been
quantified with the help of technologies such as photoelastic discs,44 or can-
tilever sensors45 and 3D living imaging of the roots in transparent soil,46 as well
as X-ray based imaging,47 have greatly advanced the field. Since roots are
multicellular tissues of macroscopic size, we refer to excellent reviews on the
topic of invasive root growth36,48 as well as Chapter 5, and focus on the single-
celled growth of root hairs in the present chapter.
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Figure 6.2 Lateral root formation initiates with cell divisions in a spatially confined region of the pericycle located in the central steele of
the primary root. The resulting lateral root primordium develops a new root apical meristem whose continuous cell divisions
produce the elongating new root, which in turn breaks through the cortex and epidermis of the primary root to continue
growing through the soil.
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6.3 Cell Mechanics of Intrusive Growth

6.3.1 Highly Polarized Cell Extension Directs Force Generation

The growth pattern of invasive cells is unique, as the cells are highly polarized
and typically extend exclusively at the very apex of the cell.18,20,21,49 The mor-
phogenetic process generating these cylindrical cells has been subject to mul-
tiple efforts to characterize the cell-mechanical underpinnings through
modeling.50,51 The apical cytoplasm of tip-growing cells is often densely popu-
lated by vesicles, both exocytotic and endocytotic (Figure 6.3). Exocytotic vesicles
deliver the material required for cell expansion, notably cell wall precursors and
membrane material. In pollen tubes, the apical vesicle population forms an
inverted cone-shaped region that is fed by Golgi-derived vesicles delivered to the
apex by an array of actin filaments52 (Figure 6.3b), whereas fungal hyphae ty-
pically feature a structured vesicle aggregate called Spitzenkörper organized by
microtubules53 (Figure 6.3a). This interaction of Spitzenkörper and micro-
tubules is also known to function as a ‘compass’ that serves in preserving the
‘directional memory’ of the fungal hyphae when they navigate around the obs-
tacles.142 Bigger organelles such as mitochondria and endoplasmic reticulum
sometimes share the apical space but more typically remain in more distal re-
gions of the tubular cell. Vesicle movement in hyphae occurs towards the Spit-
zenkörper and from there radiates to the apical plasma membrane, whereas in
pollen tubes, vesicles are delivered through a circular movement which in
angiosperm pollen tubes occurs in an inverse fountain-shaped pattern con-
trolled by the actin cytoskeleton.54–56 In all tip-growing cell types, the spatial
organization of the cytoplasm ensures that both delivery of new cell wall material
and the expansion of the existing cell wall are confined to the apical region of the
elongating cell. This extreme polarization of tip-growing cells is very different
from the growth behavior of most other plant cells, which display more global
deformations across the cell surface, also termed diffuse growth.57 The con-
tinuous addition of new cell wall material is controlled by cellular feedback
mechanisms51 and involves breaking and forming crosslinks between newly
added and existing cell wall polymers.58,59 Once the cell wall material at the tip is
excreted it starts to stiffen, which locks in the cylindrical diameter. In pollen
tubes, this stiffening is caused by the gelation of pectin polymers whose secreted
methyl esterified configuration becomes de-esterified in muro (in the wall)
through the action of pectin methylesterase.60,61 In fungal hyphae, the main wall
components are chitin and b-glucans and the distal stiffening involves hydrogen
and covalent bonds.62,63 The tip-focused maintenance of the cylindrical geom-
etry is a self-similar morphogenetic process that is regulated through a fine-
tuning between internal turgor pressure and biochemical cell wall properties at
the apical growing region.6,21

While pollen tubes, fungal hyphae, and root hairs display a clearly dis-
cernable pattern of tip growth, the growth pattern of sclerenchyma fibers
may be more complex. In secondary xylem fibers, true tip growth seems to
prevail, as these fibers develop in the portions of the stem in which the
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Figure 6.3 Cellular tip growth is fuelled by a continuous supply of secretory vesicles delivered by cytoskeleton-mediated transport. (a)
Many fungal hyphae feature a distinct vesicle aggregate, the Spitzenkörper, which regulates vesicle transport to the apical
plasma membrane. (b) In angiosperm pollen tubes, vesicles and other organelles move in a reverse fountain shaped pattern.
The apical cell wall is softer than the wall in the distal region. Yielding of the cell wall to the turgor pressure in the apical region
enables the cell to exert forces onto an external substrate. The cytoplasm of the pollen tube is segmented by callose plugs into
the apical, viable region containing the sperm cells and generative nucleus, and distal regions that lose turgor and degenerate.
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tissues surrounding the fibers ceased elongation.11 The initial elongation of
primary flax phloem fibers on the other hand, seems to occur through dif-
fuse growth as the neighboring cells continue elongating in lockstep at least
during the initial developmental phase of the organ. During this early de-
velopmental phase, the entire cell surface enlarges,64 followed by an intru-
sive elongation of the fiber tips once growth in the neighboring cells has
ceased (Figure 6.1a). Distinguishing the different growth patterns is aided by
monitoring strain patterns of the cell surface and by profiling the fiber cell
wall and fiber tips via biochemical and mechanical parameters.14,65,66

6.3.2 Turgor Pressure Generates the Invasive Force in Walled
Cells

Cell growth in plants involves the expansion of the existing cell wall driven by
the turgor pressure,67 but whether the exertion of invasive forces is equally
dependent on turgor or whether other cellular features are involved has been a
matter of discussion. Extension of sclerenchyma fibers has been proposed to
rely on elevated turgor based on the assumption that the soft and thin-walled
growing fibers would be squished if they were less turgescent than the ad-
jacent cells, but experimental quantification of turgor is elusive.9 The increase
in turgor pressure at the initiation of intrusive growth and the maintenance of
turgor during the fiber elongation require the movement of water into the
developing fiber. Gene expression patterns suggest that regulation of this
water movement during fiber growth involves aquaporins—protein channels
facilitating water movement across membranes.9,68,69

The turgor pressure of growing pollen tubes has been measured in lily and
was found to range between 0.1 and 0.4 MPa.70 Consistent with this, the
maximum force that a pollen tube can produce when overcoming a mechanical
barrier has been measured to be approximately 10 mN for lily71 and 1.5 mN for
Camellia japonica.72 Since force is the product of the pressure and the inter-
action surface between the pressurized vessel and the substrate,6 the latter
value was calculated to correspond to a pressure of 0.19 MPa, consistent with
the magnitude of turgor. While the measured invasive forces in pollen tubes
are consistent with the notion that turgor is the driving force of their invasive
activity, this does not necessarily mean that the turgor pressure is also the
parameter that is tuned to regulate the magnitude of growth speed or invasive
force. In fact, different growth rates do not seem to be correlated with different
turgor values, and even non-growing pollen tubes can have a turgor similar to
that of growing pollen tubes.70 Variations in growth rate seem to rely instead
on a modulation of the biomechanical properties of the cell wall, which in turn
can oscillate through the effect of exocytosis of new cell wall material and cell-
wall-modifying enzymes.73 This modulation takes place at the apical cell wall,
which is substantially more compliant than the cylindrical portion,21 thus
enabling the exertion of forces against an outside substrate at this site of
the cell surface (Figure 6.3b).6 Even if the apical wall is relatively compliant,
a threshold turgor is necessary for pollen tube elongation and invasion as the
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plasmolyzed pollen tubes are unable to grow.58 On the other hand, excessive
turgor pressure can result in tube bursting,74 and turgor clearly must be
carefully calibrated to be within a particular range.75

The maintenance and rapid regulation of turgor in pollen tubes is likely to
be facilitated by the segmentation of the protoplast that separates the con-
tinuously elongating growing region from degenerating distal regions where
turgor is gradually lost. This segmentation is achieved by the deposition of
plugs made through localized centripetal invagination of the cell wall built
from callosic wall material (Figure 6.3b). These plugs are produced repeat-
edly once the male germ unit has moved forward through a particular tub-
ular segment and ensures that the volume of the living portion of the
cytoplasm remains within a relatively constant range.74,76

The values of maximum force generated by pollen tubes in in vitro setups does
not necessarily allow one to deduce the actual penetration force exerted inside
the pistil, as this force is dependent on both growth rate and the stiffness and
texture of the surrounding matrix.6,24 The use of differently stiffened growth
matrices allows the determination of whether the penetrative ability in a given
cell type is influenced by the substrate and what the optimal stiffness is.23,24,77

Pollen tube species such as Arabidopsis actually grow better in a stiffened me-
dium compared to a liquid medium, in line with the tissue architecture of the
pistil in this species.24 A systematic comparison of plant species with solid style
(transmitting tissue consisting of densily packed cells) or hollow style (trans-
mitting tissue lining a cell-free canal filled with a viscous extracellular matrix)
revealed a consistently different behavior of the respective pollen tubes when
confronted with a stiff artificial matrix in vitro.24 Tubes adapted to a solid style
not only display greater ability to penetrate a stiffer matrix when compared with
the pollen tubes from species with hollow style, but also prefer a stiffer medium
when presented with a choice, a phenomenon termed durotropism.24 The
growth matrix influences pollen tube growth not only through its stiffness
properties, but structural anisotropy can also cause pollen tubes to display sig-
nificantly altered growth directions. In Arabidopsis mutants with altered cellu-
lose orientation in the stigmatic papilla, pollen tubes formed coils around the
papillae rather than growing straight along these longitudinal cells.143

Fungal hyphae are exposed to highly variable substrates and, therefore, have
to be able to efficiently adjust to changing external osmolyte concentration.
Certain substrates that hyphae are able to penetrate are phenomenally stiff,
such as rock. Some fungal species can create specialized structures that are able
to produce the pressures that are required to invade particularly resistant
surfaces. One such example is the plant pathogen Magnaporthe grisea, which
produces infection pegs from flattened, enlarged hyphal tips called appressoria.
Appressoria can establish a turgor pressure of up to 8 MPa that enable the
invasive structure to penetrate the plant epidermis.78 A tight control of the
turgor pressure therefore seems to be crucial for fungal organisms. Upon hy-
perosmotic shock, fungal hyphae of Neurospora crassa display reduced turgor
pressure, hyphal growth, and decrease in hyphal volume, but all parameters
were found to rapidly return to their original values through regulatory
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mechanisms.79 The second crucial element in addition to high turgor is the
capacity of the appressorium to firmly adhere to the surface of the structure to
be invaded. This adherence is key to prevent pushback caused by the invading
infection peg. While the invasion angle of the Magnaporthe grisea infection peg
is normal to the plant leaf surface, a different strategy is employed by Phy-
tophthora, a plant pathogenic oomycete. Phytophthora hyphae do not form ap-
pressoria, but they do adhere to the surface of the plant orgen to then assume
an oblique angle to breach the surface. The angled approach has been likened
to the slicing principle of single-beveled Japanese kitchen knifes and was ac-
cordingly named the ‘naifu-mechanism’.80 Whatever the angle of attack, it is
generally assumed that the infection peg or invading hypha requires substantial
turgor pressure, although whether this truly applies to all types of hyphae and
under all conditions remains unclear, since certain oomycete hyphae seemingly
grow even in the absence of any measurable turgor pressure.81,82

6.3.3 Cytoskeletal Elements Regulate Tip Growth and
Invasion Through Cell Wall Assembly

Force generation in animal cells involves cytoskeleton-based actions such as
polymerization of cytoskeletal arrays and contractile mechanisms. Similar
principles have been proposed for some walled cells83,84 since they were observed
to elongate under low or absent turgor pressure.84 In pollen tubes, pharmaco-
logical interference with actin polymerization reduces the cell’s ability to invade
and penetrate a stiffened medium;22,23 however, whether this effect can be as-
cribed directly to any force generation by the cytoskeletal arrays is unclear.
Interestingly, moderate interference with the actin cytoskeleton also abolishes
growth oscillations in these tubes.85 This indicates that the role of actin in
regulating the invasive force of pollen tube growth may be mediated by the de-
livery of cell wall material to the expanding apex and thus the dynamics of the
supply of the building material that is required for the cell to elongate.22,60,86,87

Studies in oomycetes Achlya bisexualis and Phytophthora cinnamomi pro-
vide similar evidence for such an indirect role of actin. Comparing hyphae
growing either invasively (through agar) or non-invasively (on the agar sur-
face) revealed an ‘actin-free zone’ at the tip region of the former but not the
latter.88,144 The authors suggest that the depletion of actin at the tip region
of invasive cells would ensure a greater yielding capacity of the cell wall, thus
allowing for higher invasive force to be exerted.88,89 Similar evidence for
actin functioning as a ‘restraint’ for tip expansion has been found in zygo-
mycete Gilbertella persicaria90 and ascomycete Geotrichum candidum.91 In
other words, actin is suggested to be involved in tip yielding and thus the
invasive growth in fungal hyphae, through its effect on the cell wall.
Microtubules, on the other hand, do not have a significant effect on the
pollen tubes’ ability to invade a stiffened medium, but they seem to be in-
volved in enabling pollen tubes to change growth orientation as demon-
strated by pharmacological treatment.23 Mutation in the microtubule-
severing enzyme KATANIN1 confirms that invasive pollen tube growth is not
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affected by interfering with microtubule dynamics.143 The helically bundled
cortical microtubules localized at the sub apical region of a tip growing cell
are, however, suggested to be involved in developing a ‘structural memory’
for the cell be able to restore growth direction after an encounter with an
obstacle.145,146

6.4 Chemical and Enzymatic Tools Facilitating Invasion
The pollen tube encounters multiple types of obstacles on its way through the
stigmatic and stylar tissues, starting with the stigmatic cuticle layer
(if present), followed by the transmitting tissue, the micropyle of the ovule, the
nucellus enveloping the female gametophyte, and the synergid cells adjacent
to the egg cell. In species with solid transmitting tissue, the intercellular
spaces are typically narrower than the tube diameter,92 several additional
mechanisms such as enzymatic lysis and chemical digestion are thought to be
employed by the tube to facilitate invasion. Enzymes can help break down the
molecules involved in cell adhesion or can degrade the invading tissue
completely. Some pollen tubes, for example those of Brassica napus L., pro-
duce cutinase, an enzyme that digests the cuticle of the stigmatic papillae.93

Agents with the potential to affect the apoplast are expansins,94,95 poly-
galacturonase, glucanase, endoxylanase,96 and pectin esterase.97 While gene
expression profiles show that these proteins are expressed by pollen tubes, it
has been difficult to tease apart whether they serve to modulate the pollen
tube’s own wall or are targeted at the transmitting tissue. Another elegant way
to soften the solid matrix is autodigestion via programmed cell death.98 This
has been shown to occur upon pollination in plant species such as petunia,99

where the transmitting tissue undergoes cell death, leading to turgor loss and
tissue softening. This both softens the pollen tube’s path and may also pro-
vide additional nutrients for the elongating cell.

Enzymatic lysis is a crucial tool for fungal species to enable infection of
other organisms. Plants use their external cuticle layer and the polysaccharide
rich cell wall as the ‘first line of defense’ against invaders.100 Fungi, therefore,
produce a wide variety of enzymes that have the ability to depolymerize the
plant cell wall polysaccharides.100 Among these are pectinase,101,102 cellu-
lase,102 arabinase,103 xylanase,104 and galactanase.105 Enzyme-deficient fungal
mutants display reduced ability to cause infection.106,107 Cutinase is formed
in particular by fungal species that do not form appressoria and hence are
unable to generate similarly high physical forces.77,108 The secondary cell
walls of wood tissues are more resistant to degradation both physically and
chemically, but some fungal species such as white rot and brown rot produce
enzymes that degrade hemicellulose, lignin, and cellulose, core polysacchar-
ides forming the compound middle lamella in wood.109 Enzymatic digestion
of cell walls is also often employed by invasive organisms that trigger the
development of plant tumors.110 For instance, in the case of corn smut dis-
ease, the infection by the biotrophic fungus Ustilago maydis alters the level of
hemicelluloses in the infected plant cell wall, modifying the abundance of
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xylose and arabinose, a process that presumably facilitates piercing the organ
surface.111 Subsequent tumor formation results from a local plant cell
enlargement and cell division triggered by the fungus. Unlike in animals,
tumors are rarely fatal for plants, since metastasis is impossible due to the
lack of a circulatory system.110

6.5 Biomechanical Approaches to Quantify Invasive
Forces

Invasive growth clearly relies on cell mechanical features and the cells’
ability to generate forces. To better understand invasive growth, it is there-
fore essential to quantitatively characterize these features. Significant effort
has been put into designing experimental devices that are able to determine
the mechanics of the cell wall, to quantify turgor, and to measure the in-
vasive force of individual cells. Advancement in micro-measurement tech-
nology in recent years has been instrumental, notably microfluidics
(microdevices with controlled fluid flow) and microelectromechanical sys-
tem (MEMS)-based platforms.112–116 These Lab-on-Chip (LoC) devices allow
the creation of micro-environments that mimic aspects of the natural growth
environment, such as varying degrees of mechanical resistance, chemical
gradients, or patterned physical obstacles (Figure 6.4a–c). Importantly, LoC
allow observation and manipulation of individual cells, confining their
growth to a single focus plane and thus enabling high-resolution microscopy
and extended time-lapse imaging.117 The fabrication of microfluidic and
MEMS devices allows for micrometer precision but requires engineering
expertise (e.g. direct-write lithography and cleanroom facilities),118,119 but
technically simpler and more affordable alternatives can be used if spatial
resolution of the design is less critical.120 Exploiting LoC technology, a
platform called the TipChip was developed to study the growth pattern of
pollen tubes, for example, to characterize their chemotropic behavior and
response to electrical fields113,121 (Figure 6.4a). These studies are conducted
with the aim of understanding how the pollen tube orients its growth in the
maze of the female tissues.122 The electric LoC is fabricated from two
separate bondable modules: a PDMS (polydimethylsiloxane)-based micro-
fluidic module for accommodating the suspension of cells in liquid medium
and a micro electrode module with a metallic layer that serves to apply the
electric field.113 As in all variations of the TipChip, the height of the
microfluidic channel network is determined by the size of the pollen grains
(80 mm for Camellia japonica),113 whereas other microfluidic platforms place
the grains outside of the microchannel network proper, allowing for a
smaller vertical dimension to fit the growing pollen tubes more snugly.116

Depending on the experimental design and the needs for continuous fluid
flow, the channel design must allow fluid-flow-mediated placement of pollen
grains to locations or traps where they are immobilized and from where the
tubes grow into or towards the testing setup.123,124 The microchannel

216 Chapter 6



architecture must also be designed to avoid clogging to allow for effective
liquid exchange.

To quantify the pollen tube’s invasive forces, LoC have been employed to
expose them to a variety of narrow spaces and complex mazes114 with
sophisticated microscopic design features, such as elastic cantilevers serving
as strain gauges (Figures 6.4b–c and 6.5c and d).72 Microchannels featuring
consecutive narrow gaps were designed to mimic the microarchitecture of the
pistillar tissue (Figures 6.4b and 6.5b).114,116,125 An elongating pollen tube
deformed the PDMS sidewalls of the gap, allowing for the calculation of the
force exerted to maintain its diameter against compressive stress.125 In-
triguingly, the pollen tube diameter changed transiently after it made its way

Figure 6.4 Biomechanical approaches to quantifying invasive and oriented tip-growth
behavior. (a) Lab-on-chip device offering pollen tubes a choice to grow
toward or away from an electrical field. (b) Microfluidic design to challenge
elongating pollen tubes with narrow gaps. The pollen tube diameter
transiently widens following gap passage. (c) Microchannels with complex
geometrical patterns designed to investigate the pollen tube’s ability to
cope with mechanical obstacles and reorient growth. (d) Measuring
penetrative forces of fungal appressorium using waveguide deformation.
(e) Optical tweezers to measure the force exerted by hyphal tips by way of
displacement of trapped beads. (f) Microindentation using indenters of
different shape and size to determine cellular stiffness. The indenters are
attached to cantilevers, the deflection of which is monitored by optical
sensors. (g) Assay exposing growing pollen tubes to media stiffened to
different degrees by varying the concentration of agarose.
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through the gap (Figure 6.4b), suggesting the existence of a feedback mech-
anism that calibrates the invasive force through modulation of cell wall mech-
anical properties.125 It was also shown that the vegetative nucleus and sperm
cells were able to move forward through the tube while significantly constricted
by the gap, demonstrating substantial elastic deformability (Figure 6.5b).
Similar observations were made for root hairs and moss protonemata.116

Figure 6.5 Applications of Lab-on-chip devices for the assessment of invasive growth
behavior. (a) General design of the TipChip with PDMS layer containing
microfluidic network adherent to cover slip. Tubes serve as inlets and
outlets for liquids and for injection of pollen suspension. (b) Camellia
pollen tube traversing a narrow gap. At t1, the vegetative nucleus (purple
bracket) has fallen behind its default distance from the growing tip
because it got trapped in the narrow passage created by the gap. At t2,
the vegetative nucleus has almost made its way through the gap thanks to
its elastic deformability. At t3, the vegetative nucleus has reached its default
distance from the pollen tube tip (60 mm) by accelerating its forward
movement following gap passage. Image series provided by Amir Sanati
Nezhad. Related data in Sanati Nezhad et al.125 (c) Scanning electron
micrograph of PDMS cantilever used to measure the growth force of pollen
tubes in Ghanbari et al.72 (d) Brightfield micrographs of Camellia pollen
tube growing against cantilever shown in c). Images in d) reproduced
from ref. 72 with permission from World Scientific Publishing Co., Inc.,
Copyright 2018.
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The strain gauge principle was also used to measure the invasive force
exerted by the hyphal apices.25,126 In both pollen tubes and fungal hyphae, a
technical difficulty consisted in stabilizing the longitudinal cell sufficiently
to enable measurement of reliable data for the elongation force. Strain
gauges and cantilevers have been combined with kinked microchannels
(Figure 6.5c) or agarose to stabilize the base of the tubular cell. This is a
critical element of the experimental design, as both pushback and buckling
must be prevented to enable reliable and reproducible quantitative meas-
urements. Because of their ability to strongly adhere to surfaces, the problem
of stabilizing the base of the cell was less of a challenge in the case of the
infection pegs formed from fungal appressoria. This allowed the use of a
waveguide whose deformation by the emerging peg could be monitored
optically and used to calculate the force78,127 (Figure 6.4d).

Other attempts to measure the invasive force of tip-growing cells used
optical tweezers. Fungal hyphae of N. crassa were faced with obstacles in the
form of polystyrene beads trapped in a beam of laser light (Figure 6.4e). The
force required to push a bead from its trapped position is directly
proportional to the bead’s size, suggesting that more force is required to
dislocate a larger bead.126 Regular hyphae displaced all the beads, because
the strength of the optical trap is limited only to a few piconewton
range,25,126 but the force of a conidial germ tube was determined to be
within the dynamic range of this assay, revealing that its invasive force is
much lower than that of leading fungal hypha tips.128

Since the invasive force of tip-growing walled cells is the turgor pressure,
establishing values for this parameter is an important component when
characterizing the cell mechanical underpinnings of invasion. If the cell wall
is completely pliable, the ‘entire’ internal pressure generated can be exerted
to an outside substrate, but if the apical cell wall poses substantial resistance
to deformation, the invasive force exerted by the tip-growing cell can be
expected to be lower than its turgor.25,126 The invasive force therefore does
not equate to turgor. In order to measure the turgor pressure, several tech-
niques have been employed, such as incipient plasmolysis or the pressure
probe—an oil-filled microcapillary that is injected into the cell.70,129,130

Since these methods are invasive in nature, they cannot be used repeat-
edly or over longer periods of time.131 As a minimally invasive method, ball
tonometry and other indentation techniques (Figure 6.4f) have been used to
estimate turgor. In ball tonometry, a large spherical probe with a controlled
load is applied to the cell and the contact area is measured to deduce turgor.
Other indentation techniques are based on pressing a cylindrical probe into
the cell and measuring the applied force and the indentation depth. Burri
et al. (2019) coupled a modified ball tonometry approach with micro-
indentation technique to calculate turgor pressure and measure cell wall
elasticity. The authors employed a non-invasive microrobotic system based
on cellular force microscopy (CFM) in combination with two force sensors
with different geometries and force ranges for simultaneous biomechanical
measurements on elongation pollen tubes.131
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Cell wall mechanical properties are important parameters, and atomic
force microscopy (AFM), an indentation technique with smaller indentation
depth and higher spatial resolution than CFM, has been used to assess plant
cells.132–135 Depending on tip size and indentation depth, the deformation
that is applied normal to the cell surface may be influenced by the turgor
pressure and/or by the geometry of the tissue structure, and the extraction of
absolute mechanical values from indentation measurements is not tri-
vial,136,137 but has delivered insights on the viscoelastic nature of the fungal
hyphae cell wall.25,138

Exposing a tip-growing cell to a mechanical cue has the potential to trigger
the cell to modulate its invasive force or other cellular parameter—a con-
sideration that must be made when making force measurements. Evidence
for this ability of invading cells to modulate their force stems from the ob-
servation that pollen tubes growing through increasingly narrow openings
continue at a constant speed despite the increasing impedance.125 This
suggests that they may increase their invasive force during the process. This
adaptive dynamic behavior was corroborated by the finding that once the
obstacle is passed, the tube widens (Figure 6.4b) indicating that its cell wall
had softened while it was pressing against the obstacle.

In addition to the absolute value of the invasive force, a comparative ap-
proach is therefore warranted. Pollen tubes exposed to an interface between
two different concentrations of agarose were scored for their behavior and
ability to penetrate into the stiffer medium, thus offering a test assay to
assess the effect of pharmacological interference with specific cell features
on invasive growth (Figure 6.4g). To put the measured values for the pene-
trative behavior of tip-growing cells in context, it will be valuable to measure
the stiffness of the invaded matrix in situ.24 In the case of pollen tubes, it will
therefore be crucial to quantify the stiffness of the pistil transmitting tissue.
Determining the stiffness of a uniform material is relatively straightforward
and can be done by microindentation.24 Results obtained with larger in-
denters can be extrapolated to calculate the invasion required by the
microscopic invasive cell. This extrapolation is less obvious for matrices with
complex micron-scale architecture, such as that generated by the cellularity
of the transmitting tissue and the presence of the middle lamella. Here,
indenter size will matter, and the interpretation of such measurements will
require careful consideration of geometrical features.

6.6 Conclusion and Perspective
Quantifying physical and mechanical properties at cellular and subcellular
levels is a challenge, as practical experimentation on these structures is
difficult owing to the small size of the specimens. Despite these challenges,
the parameters characterizing invasion and penetration events such as
turgor-driven growth and the dynamic regulation of cell wall mechanical
properties have been assessed successfully in a range of cell types. Recent
developments in micromechanics technologies such as LoC and MEMS-
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based force sensors will enhance our ability to directly quantify the role of
osmolyte concentration and turgor pressure and will also provide insight
into the cellular regulation of biomechanical properties. Quantitative mi-
cromanipulation will increasingly be coupled with powerful image analysis
software, for example those that enable the detection of the subpixel reso-
lution in order to do quantitative analysis of cell behavior.139

One of the major challenges associated with studying cellular invasive
growth is the observation of this behavior in situ, as the invasive growth
events occur several layers deep within the invaded tissues. Two-photon
excitation microscopy allows deeper penetration of plant tissues compared
to conventional epi-fluorescence microscopy and confocal laser scanning
microscopy and may thus be one of several possible avenues of research.140

Novel high-resolution microscopy techniques such as lightsheet fluo-
rescence microscopy are other options for deep tissue imaging, and the
continuous improvement in spatial resolution is promising. Since lightsheet
imaging requires only low doses of light in order to acquire an image in a
single plane, this technique will be crucial to allow long-term time-lapse
imaging.141 The combination of micromechanics with powerful microscopy
technology will open exciting avenues for single cell analysis.
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7.1 Introduction
Plants can generate motions, as evidenced by twirling circumnutation of
growing tendrils and closing of Mimosa leaves and Venus flytraps. They are
in motion all the time, albeit too slow or too fast to catch with the naked eye
in many cases. They grow to receive more water, light and nutrients; they
change their shapes in response to environmental stimuli, including light,
humidity and heat; and they disperse their seeds to a great distance. Despite
seemingly diverse ways to generate motions, these plant movements share a
common feature in that they are essentially hydraulic. Namely, the motions
are driven by the supply or deprival of water, which changes the volume of
cells or tissues. Because plants do not resort to complex motor proteins of
muscles, their relatively simple movements serve as a rich source of bio-
inspired actuation technologies, which we aim to address in this chapter.

When live cells are involved in botanical motions, the differential turgor
pressure builds internal stress and strain over the plant tissue, eventually
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resulting in movements.1 The turgor pressure changes by osmosis across
permeable cell walls, resulting from active regulation or environmental
conditions. For the active movements, as can be seen in stomata, for ex-
ample, plants regulate the turgor pressure by controlling ion concentration
in the cells.2 When the ion concentration of guard cells in stomata is in-
creased, the cells swell by absorbing water to deform in such a way that pores
surrounded by the cells are opened, allowing gas exchange for photo-
synthesis. To block gas exchange, the ion concentration of guard cells is
reduced so that the cells lose water through osmosis and close stomata. The
turgor pressure can also change passively, as can be seen in the differential
drying of the fruit of Hura crepitans due to environmental humidity change.3

The passive movement of the fruit’s catapult-like mechanism, triggered by
drying and shrinkage, enables the seeds’ explosive dispersal.

Plants can generate motions even with dead cells and tissues. Their motions
are passively driven by the volume change of the cells and tissues which can
swell by absorbing moisture from an external water source in the form of either
liquid or vapor. That is, they explore the hygroresponsive nature of cellulosic
materials constituting the plant cells instead of turgor pressure regulation.
Figure 7.1a–c shows the seeds of some species with long appendages called
awns, which are responsible for the seed locomotion by moving in response to
environmental humidity change.4–6 Simple swelling and shrinkage of the

Figure 7.1 Hygroresponsive movements of seed awns with a change in environ-
mental humidity. (a) Bending of the seed awns of wild wheat, Triticum
turgidum.4 (b) Helical coiling of the seed awn of Pelargonium appendicu-
latum.10 (c) Twisting of the seed awn of Stipa pulchra. (d) Self-burial of the
wild wheat seed that uses barbules as a ratchet. (e) The seed of Pelar-
gonium appendiculatum that screws into soil with the end of the awn
anchored at the soil. (f) The seed of Stipa pulchra that drills itself into
soil. Panel (a) and (d) adapted from ref. 4 with permission from The
American Association for the Advancement of Science, Copyright 2007.
Panel (b) adapted from ref. 10 with permission from Elsevier, Copyright
2020.
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constituent materials can be harnessed to generate diverse movements of the
awns, including bending (Figure 7.1a), helical coiling (Figure 7.1b), and
twisting (Figure 7.1c). Those movements allow the seeds to bury themselves via
unidirectional propulsion as anchored to soil by barbules (Figure 7.1d) or at
the awn tip (Figure 7.1e–f). The hygroresponsive movements of plants can also
be observed in the bending of pine cones,7 curling of resurrection plants,8 and
chiral deformation of seed pods of Bauhinia variegata.9

From the perspective of mimicking the plant movements for practical ap-
plications, the passive schemes based on the hygroresponsive materials are far
more accessible and thus attractive than the active schemes for the following
reasons. First, the passive schemes do not require an external control unit or
energy source, allowing for low-cost devices of a simple structure. Second, the
relatively simple motion generation strategy implies that miniature stand-
alone devices are possible that use environmental humidity change as the
trigger and energy source for movements. Third, environmentally friendly
devices are possible with the continual development of eco-friendly materials
that respond to humidity in the same way as plant cell walls.

Here, we introduce the physical principles behind hygroresponsive de-
formation of plants while emphasizing how plant tissues can program their
deformations with structural constraints. We then survey artificial hygro-
responsive actuators reported to date with classification according to their
materials and mode of deformation. We compare the performances of bio-
logical and artificial actuators, and discuss the applications of bio-inspired
actuators powered by environmental humidity.

7.2 Physical Principles of Hygroresponsive
Deformation of Plants

We start with the fundamental mechanism for volume change of hygro-
expansive materials in response to moisture content in a tissue surrounded
by a wet environment. We then introduce ingenious strategies of plants to
induce diverse movements by sophisticated arrangements of nanostructure
in cell walls. We also briefly present mathematical models to understand the
plant tissue’s deformation based on the theory of elasticity.

7.2.1 Hygroscopic Swelling in Plants

The botanical movements powered by the environmental humidity change,
as exemplified in Figure 7.1, originate from the physicochemical properties
of the materials constituting the cell walls. The plant cell walls are composed
of such organic compounds as cellulose, hemicellulose and lignin.11

Figure 7.2a illustrates those constituents, where cellulose microfibrils are
loosely surrounded by hemicellulose, and the microfibrils are connected by
lignin that bonds to cellulose via hydroxyl groups.12 As water molecules
penetrate into cell walls through diffusion, they form hydrogen bonds with
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hydroxyl groups, increasing the spacing between the microfibrils. Thus, cell
walls can hygroscopically swell if water can participate in hydrogen bonding
between lignin and microfibrils.

Now we consider a plant tissue composed of multiple cells, which is in
contact with water at one end (z¼ 0), as shown in Figure 7.2b. As dead plant
tissues act as porous media that allow diffusion of water molecules,13 the
temporal evolution of the moisture concentration, f, within the tissue is de-
scribed by the diffusion equation: df/dt¼Dr2f with t being time. The dif-
fusion coefficient, D, is determined by the size, distribution and network
structure of pores.14 As the amount of material expansion measured by the
hygroexpansive strain, eh, is proportional to the change of the moisture con-
centration Df, we write eh¼ aDf with a being the hygroscopic expansion co-
efficient. If D and eh are known for a plant tissue with spatially uniform
properties, we can obtain the instantaneous shape of the tissue (or the strain
field) at a certain time t since the contact with water by simply solving the
diffusion equation for f (Figure 7.2b).

7.2.2 Deformation Modes Programmed by Structural
Constraints

The cell walls expand as the gaps of cellulose microfibrils are increased by
water molecules, as described in Figure 7.2a. This implies that the local

Figure 7.2 (a) The molecular mechanism of hygroscopic expansion of a plant cell
wall. (b) Swelling of a porous plant tissue owing to diffusion of water
molecules from the external water source at the bottom (z¼ 0).
(c) Hygroscopic expansion of isotropic (top and middle panels) and
anisotropic (bottom panel) media. (d) A bilayer model used to analyze
the mechanics of seed awn deformation. (e) Bending of the bilayer for
isotropic contraction of L2 with drying. (f) Helical coiling for anisotropic
contractions of the sublayers of L2 with tilted microfibril angles. Inset:
Schematic of the bilayer structures of the awn. (g) Twisting of the
bilayer with contractions of L1 and L2 having opposite microfibril
angles. In (b–g), blue arrows indicate the strain directions.
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hygroexpansion arises in a direction perpendicular to the microfibrils rather
than isotropically. When the microfibrils in a single cell wall are aligned in
one direction and those cells are also aligned, the expansion of the tissue
comprising the cells can be guided anisotropically. Here we simplify the
tissues with hygroresponsive cells as plates, and describe their hygroscopic
deformations in Figure 7.2c–g. Figure 7.2c illustrates isotropic and aniso-
tropic deformations of a hygroexpansive porous plate depending on the
structural constraints. The upper and middle plates expand isotropically
owing to the absence of constraints and the randomly embedded micro-
fibrils, respectively. The lower plate swells only in a single direction per-
pendicular to the aligned microfibrils, thereby rendering the hygroscopic
expansion coefficient a dependent on direction.

Plants need to go beyond the simple expansion behavior of such a porous
plate to generate diverse movements. To this end, the motile parts of the
plants consist of multiple layers as shown in Figure 7.2d, where the cell walls
in layer L1 and those in L2 possess different microfibril arrangements. We
note that the straightened configuration in Figure 7.2d corresponds to the
wet state, which can exhibit diverse deformation modes in Figure 7.2e–g
with drying.

Figure 7.2e explains the microstructure of the seed awn of wild wheat
(Figure 7.1a). The long thin seed awn allows us to employ a plate model with
the length much greater than the width. Microfibrils are aligned along the
longitudinal direction in the cell walls of L1, thereby resulting in the
transverse elongation and contraction. The cell walls in L2 have randomly
arranged microfibrils, so that the expansion occurs isotropically. When the
bilayer is dried owing to the decrease of environmental humidity, both layers
contract. For the small width relative to the length, the transverse
contraction of L1 is negligible and thus the contraction in L2 dominates,
resulting in the bending of the dried awn concave toward the L2 side as
shown in Figure 7.2e.

The helically coiling seed awn in Figure 7.1b also consists of two layers,
but the cells in L2 are aligned as shown in the inset of Figure 7.2f. All of the
microfibrils on the upper side of the cells in L2 appear aligned in one dir-
ection while those on the lower side appear aligned in another direction, as
illustrated in Figure 7.2f. Hence, L2 can be conceptually decomposed into
two sublayers with differently aligned microfibrils. L1 acts as an inactive
layer for its negligible transverse contraction as previously explained.
Because the microfibrils in L2 are tilted with respect to the longitudinal axis,
the anisotropic contractions of the two sublayers of L2 cause the entire
structure to helically coil when drying.10

The seed awn of Stipa in Figure 7.1c consists of two layers with tilted
microfibrils, such that the microfibril angle in L1 (measured from the lon-
gitudinal axis) is opposite to that in L2, as illustrated in Figure 7.2g. The
transverse contractions of the layers cancel each other, preventing the awn
from coiling with a finite radius. Therefore, drying of the bilayer leads to
twisting, or coiling with zero radius.9
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We have seen that the movements of plant tissues consisting of many cells
can be physically understood by modeling the tissue as a laminate structure
with the constituent layers having peculiar arrangements of microfibrils.
Thanks to the small thickness of the awns (measuring tens of mm) relative to
their length and width, of centimeters and hundreds of micrometers,
respectively, we use a theory of elasticity for laminated composite plates to
mathematically analyze the deformation of the awns in response to
environmental humidity. The theory can substantially simplify the problem
because only the thickness among geometric parameters determines the
elastic response. Here we briefly provide an overview of the theory.

A simple constitutive relation for elastic deformation is written as s¼Ce,
where s, C, and e are the stress, the elastic modulus, and the total strain,
respectively. The total strain at a distance z from the neutral plane is given by
e¼ e0þ kz with e0 and k being the midplane strain and the curvature,
respectively. The absence of any external loads leads us to write the equi-
librium equations for the force, F¼

Ð
rdz¼ 0 and the moment, M¼

Ð
rzdz¼ 0.

Combining the two equations results in the matrix equations of F and M:
F¼Ae0þBj and M¼Be0þDj, where A, B and D are the matrices associated
with the mechanical properties of the composite materials and the layer
thickness.10,15 We find the strain and curvature vector to be given by

e0

j

� �
¼ A B

B D

	 
�1
F
M

� �
: (7:1)

Because the stress arises by hygroscopic swelling, we can also write F and
M as F¼

Ð
rhdz and M¼

Ð
rhzdz, where the hygroscopic stress is given by

rh¼ D̄aDf with D̄ being the stiffness matrix dependent on the elastic
modulus and Poisson’s ratio. The alignment of microfibrils in each layer
determines the hygroscopic expansion coefficient vector a, such that a has a
higher value in a direction perpendicular to the microfibril alignment. For a
medium with randomly arranged microfibrils, a is a scalar without direc-
tionality. The total force and moment are obtained by integrating stresses
over the entire cross-section of the composite laminates. Thus, the
directional properties of hygroexpansion in each layer affect the directions of
F and M. The moisture concentration f that changes with time for diffusion
of water molecules also affects F and M. We calculate F and M for the
multilayers with time, which give the strain and curvature as expressed in
eqn (7.1). They determine the temporal evolution of the shape of plant tissue
with known microfibril arrangements and the elastic properties.

7.3 Hygroresponsive Soft Actuators
Soft actuators capable of flexible mechanical motions using soft materials are
of great interest for their potential applications in soft robotics,16,17 energy
harvesting18,19 and biomedical devices.20,21 Here, we introduce soft actuators
inspired by the hygroscopic movement mechanisms of plants, which harness
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water as energy sources. Just as plants utilize the hygroexpansive properties of
cell walls and program their deformations using structural constraints, phy-
tomimetic actuators should employ hygroexpansive materials and devise a
way to guide their movements in the desired fashion. In the following, we
classify the hygroscopic actuators depending on the type of materials, as listed
in Table 7.1, and discuss the regulation mechanisms of their deformation,
which are frequently linked to the materials processing scheme. Then we
present the actuators’ performance measured by energy density and response
time, and discuss their practical applications.

One of the earliest hygroscopic actuators used paper as a hygroscopically
active layer with a polymer film attached as an inactive layer.22 Paper is
composed of a network of cellulose fibers from plants including wood and
fiber crops, which can imbibe water and swell. It was shown that the paper-
polymer bilayer bent with swelling of wet paper, similarly to a bimetallic
strip. Such actuators employing bio-based materials as an active medium are
herein termed bio-hybrid actuators (Table 7.1). The examples include those
using cellulose sponges,23 suspension of Bacillus spores,24 E. coli cells,25 and

Table 7.1 Survey of hygroresponsive actuators.

Type
Mode of
deformation Active layer Inactive layer Reference

Bio-hybrid
actuators

Bending Paper Polymer sheet 22
Paper — 27
Beech wood Spruce wood 26
Paper Wax 28
Bacillus spores Latex sheet 24

Coiling Sponge Thread 23
Purely

artificial
actuators

Bending Polyethylenimine/
poly(acrylic acid)

— 29

Poly(acrylic acid)/
poly(allylamine
hydrochloride)

NOA63 30

Liquid crystal — 31
Pentaerythritol

ethoxylate–polypyrrole
— 18

Poly(allylamine
hydrochloride)/
poly(acrylic acid)

Polytetrafluoroethylene 32

Poly(N-
isopropylacrylamide)-co-
acrylic acid

Polymer film 33

Polydopamine-modified
reduced graphene oxide

NOA63 34

Cellulose stearoyl ester — 35
Chitosan/graphene oxide — 36
Graphene oxide (wavy) Graphene oxide

(smooth)
37

Polyvinyl alcohol — 38
Bending,

coiling
Graphene oxide (wavy) Graphene oxide

(smooth)
39

Liquid crystal polymer
network

— 40

Polyethylene oxide Polyimide 10, 14
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strips of beech26 as active materials. While the other bio-hybrid actuators
only exhibited simple bending with the expansion of the active layer, the
cellulose sponge wound by a thread23 was shown to helically coil for the
spiral constraint to the swelling of the sponge.

A variety of artificial hygroexpansive materials has been exploited and
developed as active media in purely artificial actuators. Such actuators listed
in Table 7.1 utilize polymer materials, graphene oxide, or liquid crystal,
which involve hydrogen bonding sites in which water molecules can par-
ticipate. Innovations of these actuators are being sought: (1) to improve the
response speed; (2) to increase the degree of deformation; and (3) to achieve
diverse deformation modes, as surveyed in the following.

(1) The response speed of hygroresponsive actuators is mainly deter-
mined by water diffusion rate in the active layer. For increasing the
diffusion rate, micropores were introduced in the drying process of a
hygroscopic graphene oxide suspension37 or by depositing nanofibers
through electrospinning14 (Figure 7.3a and b). The following relation
was suggested to estimate the effective diffusivity of water vapor, De,
in a porous medium of porosity Z, (De�Ds)/(Deþ 2Ds)EZ(Da�Ds)/
(Daþ 2Ds), with Ds and Da being the water vapor diffusivity in the air
and the solid.41 We can see that De can be greatly enhanced with the

Figure 7.3 (a) Conventional electrospinning process to obtain a chaotic pile of
polyethylene oxide (PEO) nanofibers. (b) Directional electrospinning
process to deposit aligned PEO nanofibers on a rotating drum collector.
(c) Fabrication of a bilayer actuator by attaching an inactive polyimide
(PI) layer to the active PEO layer. (d) Cutting of the bilayer at an angle
relative to the fiber alignment to obtain helical coiling. (e) Experimental
images of the bilayer actuators that have coiled by drying under the
relative humidity of 20%. The helix shape (radius and pitch) depends on
the angle between the fiber alignment and the longitudinal axis of the
actuator. Panel (b) and (c) adapted from ref. 14 with permission from
The American Association for the Advancement of Science, Copyright
2018. Panel (d) and (e) adapted from ref. 10 with permission from
Elsevier, Copyright 2020.
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increase of Z because DaB10�5 m2 s�1 is of several orders higher than
Ds of polymers on the order of 10�12 m2 s�1.

(2) The bending curvature of bilayer actuators is a function of the
hygroexpansion coefficient, the thickness of each layer, and the ratio
of elastic moduli, as dictated by a classical theory of Timoshenko.42

Shin et al.14 increased the hygroexpansion coefficient of the active
layer by aligning nanofibers in the longitudinal direction through the
process of directional electrospinning (Figure 7.3b). Patterning wrin-
kles on the active layer can enhance the degree of bending, as dem-
onstrated by Qiu et al.37

(3) For more complicated deformations than mere bending, attempts were
made to embed structural constraints in the active layer, just as ob-
served in the seed awns of Pelargonium and Stipa. Alignments of liquid
crystal polymer network,40 electrospun polyethylene oxide (PEO) na-
nofibers,10 and corrugations of graphene oxide deposits, in various
angles with respect to the longitudinal axis of active layer, were shown
to induce helical coiling of various pitches and radii. Figure 7.3e shows
the bilayer actuators that coil helically depending on the tilt angle of
aligned nanofibers with respect to the longitudinal axis.

An actuator’s performance is frequently measured by how much mech-
anical energy it can produce per unit volume and time. Hence, we indicate
the energy density and response time of the actuators whose pertinent in-
formation is available, in Figure 7.4. Such choice of the variables enables us
to draw lines of constant slopes that correspond to lines of equal power
density. We find that many of purely biological and bio-hybrid actuators
based on Bacillus spores,24 pine cones,22 and wood26 are relatively strong but
slow by exhibiting a large energy density but a long response time. Artificial
actuators with a short response time were reported, which adopted thin
hygroexpansive layers.14,18 A porous active layer produced by deposition of
electrospun nanofibers achieved a response time of approximately 1 s for an
actuator 25 mm in length and 68 mm in thickness.14 Even for the same
material, the energy density could be raised by an order of magnitude (blue
triangle versus blue square) by aligning nanofibers in one direction through
directional electrospinning, as depicted in Figure 7.3b.

The ubiquity of water in our environments (as humidity, sweat, fog, rain, etc.)
makes it highly promising to utilize hygroresponsive actuators in practical
applications. Attempts are being made to use the actuators for such areas as: (1)
robotic locomotion; (2) energy harvesting; and (3) smart materials for archi-
tecture and garments.

(1) The continual variation of environmental humidity causes the actuators
to alternate the deformation directions, e.g. between bending (coiling)
and unbending (uncoiling), which should be rectified to achieve
directional motion for locomotive applications. A bending actuator was
shown to locomote in one direction under varying humidity when
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placed on a patterned substrate which allows only one-directional
crawling.30 Figure 7.5a shows a bending actuator with leg-like append-
ages at the ends, which exhibited a variable friction coefficient
depending on the posture. The actuation system could wriggle forward
at a velocity of 6 mm s�1 or 0.24 BL s�1, with BL denoting the body
length, under the humidity variation between 20% and 80% at 0.5 Hz.14

Figure 7.5b shows a miniature car consisting of multiple bending ac-
tuators arranged on a wheel, which could rotate thanks to the humidity
difference between the region surrounded by the wet paper and the
outer region exposed to dry air.43

(2) Hygroresponsive actuation can be exploited to convert the energy of
environmental humidity to electricity. Ma et al.18 attached a piezo-
electric film to a hygroscopically active layer, as shown in Figure 7.5c,
and placed the actuator-generator system on a wet substrate. The
gradient of relative humidity from the wet substrate to the dry en-
vironmental air drove the actuator’s continuous flipping, so that
electricity could be generated. Figure 7.5d shows an energy harvesting
system placed on a water bath, in which a mechanical structure os-
cillated by an array of hygroresponsive actuator is connected to an
electromagnetic generator.43

(3) The ability of hygroscopic actuators to change their shape in response
to environmental humidity change can be harnessed to develop smart
actuation systems that interact with surrounding natural conditions.
Figure 7.5e shows a wall consisting of hygroscopic wood plates, which
opens in dry weather but closes when wet.44 The garment shown in
Figure 7.5f has ventilation flaps made of hygroscopic actuators, which
can open when wet with human sweat but close when dry.25

7.4 Conclusions
We have introduced the physical principle of hygroexpansive movements of
plants and bio-inspired actuators powered by environmental humidity. The

Figure 7.4 Energy density and response time of hygroresponsive soft actuators.
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power density of artificial actuators is now comparable to their biological
counterparts owing to advanced material synthesis and processing technology,
and mathematical modeling for design optimization. Still, challenges lie
ahead, as listed partially in the following, before hygroscopic actuators are
widely appreciated as competitive elements for future sensors, actuators, and
soft robots. First, the strength of the materials should be enhanced further to
compete with other actuators, including artificial muscles and shape-memory
polymers. Second, durability of the moisture-sensitive actuators should be
improved under repeated cycles of humidity variation and excessive supply of
water. Third, materials that change shape differently in response to different

Figure 7.5 (a) A locomotive actuation system, named hygrobot, which propels itself
by rectifying repeated bending and unbending with leg-like appendages
under humidity variation. (b) A miniature car that is powered by rotation
of a wheel consisting of multiple hygroresponsive actuators under
different humidity conditions established by the white wet paper. (c) A
cross-section of a composite layer consisting of the upper piezoelectric
film with electrodes and the lower hygroscopically active layer. (d) An
electromagnetic generator connected to a mechanical structure that
oscillates with hygroexpansion of the actuator array. (e) A humidity-
sensitive wall consisting of hygroscopic plates. (f) A garment with venti-
lation flaps that change shape in response to the surrounding humidity
conditions. Panel (a) adapted from ref. 14 with permission from The
American Association for the Advancement of Science, Copyright 2018.
Panel (b) and (d) adapted from ref. 43, https://doi.org/10.1038/
ncomms8346, under the terms of the CC BY 4.0 license https://
creativecommons.org/licenses/by/4.0/. Panel (c) adapted from ref. 18
with permission from The American Association for the Advancement
of Science, Copyright 2013. Panel (e) adapted from ref. 44 with permis-
sion from Elsevier, Copyright 2015. Panel (f) photo credit: Tangible
Media Group, MIT Media Lab, adapted from ref. 25 with permission
from The American Association for the Advancement of Science,
Copyright r 2017, The Authors.
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fluids can find diverse applications, including hazard detection, mechan-
ochemical encryption, and versatile shape-morphing systems.
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